导读甲基化知识点答所以首先需要搞清楚什么是表观修饰,表观遗传学,以及为什么关注DNA甲基化这其中一种表观修饰!表观遗传修饰是指对基因组功能的相关修饰,通过一系列生物学修饰...

今天运困体育就给我们广大朋友来聊聊山西甲基化调控,希望能帮助到您找到想要的答案。

甲基化知识点

甲基化知识点

所以首先需要搞清楚什么是表观修饰,表观遗传学,以及为什么关注DNA甲基化这其中一种表观修饰!

表观遗传修饰是指对基因组功能的相关修饰,通过一系列生物学修饰改变基因的活性而不是DNA的核苷酸序列影响基因的表达。对基因组功能的相关修饰主要包括对**DNA、RNA、以及组蛋白等的修饰,这些修饰改变了染色质的局部电化学特性和构象,从而调节基因的转录活性。

其中对 组蛋白修饰 主要是究方法通常是chip-seq技术,我们已经在生信技能树发布了系统性的chip-seq教程,这里就不再赘述。组蛋白是染色质的重要组成部分,主要分为H2A、H2B、H3、H4,与DNA缠绕可形成核小体。 组蛋白修饰 是在组蛋白N末端的氨基酸残基上发生的共价修饰,主要包括甲基化、乙酰化、泛素化、磷酸化、羰基化、糖基化等。

DNA甲基化 是表观遗传学领域一个重要的研究方向,真核生物中最常见的DNA修饰非 5-甲基胞嘧啶(5mC) 莫属了,然而在原核生物中最常见的DNA修饰方式则为 N6-methyladenine (6mA) ,即腺嘌呤第6位氮原子甲基化修饰。

人类是真核生物 ,所以当然是5mC的DNA甲基化形式的检测咯。人的参考基因组约30亿碱基,上面不到1%是 CpG位点,可以被甲基化,也就是说不到3千万个 CpG 位点。这些 CpG 位点中,大约 60~80% 被甲基化。主要是而启动子等特殊区域存在 未被甲基化的CpG 岛,那些区域的CpG 位点比较富集。目前研究表明,肿瘤细胞的甲基化水平平均是低于正常细胞的。

亚硫酸盐是甲基化探测的“金标准”,不管是芯片或者甲基化测序,都要先对DNA样品进行亚硫酸盐处理,使非甲基化的C变成U,而甲基化的C保持不变,从而在后续的测序或者杂交后区分出来。

关于DNA甲基化检测手段介绍,我觉得 Make Decision: DNA甲基化检测方法,哪一款适合你? 写的就足够好了。同样的,早期研究以芯片为主,从成本的角度来看,也是芯片为主,但是测序数据更丰富。

可选的甲基化芯片产品就少很多,绝大部分是illumina公司产品的,从27K到450K到850K甲基化芯片。比较好的介绍是:Illumina 琪先生 2018-07-17的 一文了解 MethylationEPIC 850K 甲基化芯片

Infinium MethylationEPIC BeadChip芯片包含了原先的Infinium Methylation450 BeadChip芯片90%的内容,这种选择可提供一种广泛、全面的甲基化组图谱。而且还靶定了ENCODE计划中确定为潜在增强子的区域,还有FANTOM5计划在各种组织类型中确定出的增强子。详细如下:

Infinium MethylationEPIC BeadChip芯片的数据分析是由GenomeStudio Methylation Module模块所支持,让研究人员能够对小规模研究开展差异甲基化分析。GenomeStudio软件2011.1版特有高级可视化工具,让研究人员能够在单幅图中查看大量的数据,如热图、散点图和线图

甲基化检测方法多达上百种,哪怕是基于NGS的测序技术,也有BS-Seq、MeDIP-Seq、RRBS-Seq、WGBS、MBD-Seq、SMRT 等,我发现 何聪聪 诺禾科服 2016-09-10 介绍的比较齐全,摘抄送给大家,原文在: DNA甲基化研究方法速递

我们我们介绍甲基化测序数据的一般分析流程的时候,主要是针对WGBS技术的数据。

BS-Seq(亚硫酸氢盐测序)有两个缺点:

针对这两个缺陷,科研界一直在尝试研发改进方法。

复旦大学于文强教授团队开发出了一种新的全基因组检测的方法 GPS。该方法利用 T4DNA 聚合酶的 3′-5′外切酶活性和 5′-3′聚合酶活性,使得双端测序的一端是基因组原序列,另一端是转化后的表观序列。该方法极大提高了比对效率和准确性。

当然了,也是可以用低通量手段,专注 特异性位点甲基化检测 ,有:

比如发表在BMC Med. 2009 Oct 的文章Genomic and epigenetic evidence for oxytocin receptor deficiency in autism.里面Gregory等研究者通过 亚硫酸氢盐测序 的方法对119例ASD患者和119名健康人进行了DNA甲基化分析,分析了与调节OXTR表达相关的CPG在外周血和颞叶皮质的甲基化水平,发现ASD患者的CPG甲基化水平在外周血和颞叶皮质均较健康人明显升高。这个研究里面的bisulfite sequencing (BSS)就是低通量,仅仅是关注感兴趣的基因而已:

生物学意义,通常是建议大家看教科书吧,DNA甲基化是最早被发现的表观遗传修饰途径之一,参与许多重要的细胞过程,如基因组印记、X染色体灭活、转录抑制、胚胎发育等,与精神分裂症、Rett综合征、肿瘤等多种疾病的发生和发展密切相关。

尤其是我感兴趣的肿瘤中普遍存在DNA甲基化状态的改变,其特点是总体甲基化水平的降低与局部甲基化水平的升高。在肿瘤细胞中,癌基因处于低甲基化状态而被激活,抑癌基因处于高甲基化状态而被抑制。

比如: DNA甲基化与肿瘤风险预测

再比如: DNA甲基化推进脑肿瘤的精准分型

还有番茄,玉米的研究,大家自行检索深入学习哦。

当然,更值得一读的是2018年5月, Nature Reviews Molecular Cell Biology 发表的中国科学院上海植物逆境生物学研究中心 朱健康 研究员、 张惠明 研究员与 郎曌博 研究员共同完成的题为“Dynamics and function of DNA methylation in plants”的综述文章。 系统的讨论了植物中DNA甲基化过程。

人体内,DNA甲基转移酶主要有四种:DNMT1、DNMT3A、DNMT3B和DNMT3L。

因为药物研发也不是我的领域,这里略~~~

随着高通量生物技术(芯片、测序技术)的不断更新发展,高通量的DNA甲基化数据不断涌现,一些大型国际合作的生物大数据计划产生了Pb(petabyte)数量级的甲基化谱。由多个国家和地区的研究机构组成的“国际人类表观基因组同盟”(International Human Epigenome Consortium,简称IHEC)为了研究与人类健康和包括癌症在内的复杂疾病相关的细胞状态产出了超过1000个表观基因组的数据

摘自:

m6A甲基化对我来说就是好新鲜

俗话说“文献是最好的老师”,但是隔行如隔山,在科研界,隔着一个领域就有一个巨大的鸿沟。就比如就算做肿瘤研究的人,看免疫学领域的文章还是会头皮发麻,看到总是记不住的CD4+ T细胞,CD8+ T细胞,各种CD分子就能让人头秃。不做表观遗传的人,看到甲基化,泛素化,乙酰化就害怕的想往后退。但学习的过程,就是把自己那胆小的脑细胞安抚一下,客服困难后获取知识的感觉如沐春风。

m6A甲基化,咋一听名字我就是拒绝的。甲基化我可以理解,m6A又是什么?它的功能是什么 m6A甲基化,对我来说就是一张白纸,我除了一个名字,全然不知。

以下将是一个m6A甲基化小白的拆解式了解

本文参考的文章有:RNA甲基化修饰——m6A概念,重磅前沿 (这是一篇非常言简意赅的文章,请一定要阅读)

一看到甲基化就想到修饰 ,这个原因不加解释了。一直以为我从未关注过中心法则中的RNA,也未考虑过RNA也需要修饰。实际上已知RNA已经存在超过100中修饰,下面是我在谷歌中找到的图

以下是果子推荐

看到这里,不由的点点头,嗯,m6A甲基化真的很重要呢!

你身体的高甲基化能力——让你变得活力十足

“甲基化”是我们人体最为活跃的一种化学反应,甲基是由一个碳原子和三个氢原子组成的活性集团,是蛋白质和核酸的一种重要的修饰,调节基因的表达和关闭,与癌症、衰老、老年痴呆等许多疾病密切相关,最常见的甲基化修饰有DNA甲基化和组蛋白甲基化。

1、如何通俗理解“甲基化”?

通俗的说,把我们的身体比作一个非常大的跳舞的舞场,各种甲基在这个舞场里面“通过生化渠道”从一个舞伴跳到另外一个舞伴(就是专业资料上说的去掉一个甲基和加上一个甲基的过程),甲基在不断换舞伴的过程,实际上是身体在制造它需要的物质或分解不需要的物质的过程。

比如我们碰到一个突发事件,受到惊吓,身体的“去甲肾上腺素”就会立即加上一个甲基变为“肾上腺素”,我们知道肾上腺素是一种激素和神经传送体,它可以瞬间让我们的呼吸加快,瞳孔放大,心跳与血液流动加速,这种表现其实是为了使我们的反应更加敏捷,让身体快速处于应激状态并快速的为身体活动提供更多能量,来更好的应对突发事情。

而当身体处于平静状态,肾上腺素又去掉一个甲基成为“去甲肾上腺素,”DNA甲基化能关闭某些基因的活性,去甲基化则会诱导基因的重新活化和表达;我们可以理解为去甲基化是打开开关,加甲基是关闭开关。

我们身体里面每秒钟会发生10亿次甲基化过程。甲基化过程中会不断的打开一些反应和关闭掉另外一些反应,目的是把我们身体维持、调整在一个平衡,良好的范围内。

2、甲基化和血同(血液中的一种毒素)的关系

我们再来说一下甲基化跟血同(血液中同型半胱氨酸)的关系,假如你的身体有非常好的甲基化能力,血液中的同型半胱氨酸会有两个去向,第一通过甲基化通道,合成S-腺苷甲硫氨酸(SAMe),第二是通过抗氧化通道合成谷胱甘肽,SAMe它不但是身体里面天然的抗抑郁、抗衰老的物质,还是我们肝脏的保护剂,而且SAMe本来也是我们体内非常好的甲基供体,并且它会乐意放弃自己的甲基去帮助身体其他的化学物质;而通过抗氧化通道合成的谷胱甘肽是我们身体最好的抗氧化物,它在我们体内充足,我们人体就不容易衰老,显得更年轻。

3、你身体有很好的甲基化能力吗?

但事实不是每个人甲基化能力都很好,当你的同型半胱氨酸值(Hcy)过高的时候,你会存在甲基短缺,因此你的SAMe和谷胱甘肽等许多重要的化学物质短缺也就不足为奇了。这也是我们为什么要建议补充甲基化的活性叶酸和甲基化B12等甲基化B族类维生素的原因。

举例说,在我国人群的基因组中,有关代谢亚甲基四氢叶酸还原酶基因C677T位点的纯合突变率为25%,杂合突变率为45%,远高于西方国家10-16%的水平。这个数字意味着,每4个人当中就有3个人叶酸代谢不同程度的降低,那么直接补充甲基化的活性叶酸就能绕过我们基因缺陷中甲基化能力的不足导致同型半胱氨酸浓度升高的风险。

在体内利用甲基化的活性叶酸,降低同型半胱氨酸浓度的过程会自然增高SAMe和谷胱甘肽的浓度,这样可以让身进入一个有很强的抗氧化能力并且活力十足的良性循环。

现代科学的发展能够让我们通过检测“同型半胱氨酸代谢”(Hcy 简称H元素)基因,做精准的干预,使同型半胱氨酸浓度降低,从而提高身体的甲基化能力和抗氧化能力了。

参考资料:

·我的基因网

说明:

本文为原创文章,图片来自于网络,欢迎交流学习,商业转载请联系本人!

甲基化套路

和甲基化有关的。

可以先了解下甲基化:

450k甲基化基础

450K甲基化芯片数据处理传送门

450k甲基化芯片常用工具包:ChAMP和minfi等。

甲基化的一些预备知识

甲基化程度的量化

DMP(或DML,差异甲基化位点)与 DMR(差异甲基化区域)的关系。如何定义DMR?

一般来说,DMR是通过统计bump来计算出来的,可以参考: ChAMP 分析甲基化芯片数据-差异分析下篇

一般来说,我们还会关注两个方面的信息:DMR与CpG岛的关系,DMR与基因的关系。

DMR与CpG岛的关系:图片来自 ShengXinRen

关于DMR或DMP与基因的关系(笔者特别关注甲基化位点的功能注释),简要总结如下。

一般而言,启动子区域的甲基化程度影响基因的转录(但也有报道说第一外显子等位置的甲基化也与基因的转录相关)。如何描述一个基因的转录相关的甲基化程度呢?

有个论坛上是这么说的( ShengXinRen ):

也有人总结如下:

以及这种说法( ):

另外,补充一个知识( “启动子预测”技能 ):

感觉暂时并没有统一的标准。

可以自己尝试各种界定标准:

1、 TSS上游1500bp、2000bp、5000bp内的甲基化位点的平均值;

2、 TSS上游及下游1500bp、2000bp、5000bp内的甲基化位点的平均值;

3、 TSS上游1500bp、2000bp、5000bp内或5-UTR或第一外显子的甲基化位点平均值。

考虑5000是因为CpG岛的加上两边的Shore一般可达到6kb左右。注意到,5-UTR是第一外显子的一部分。有时候甚至还可以加上是否为CpG岛(或Shore)这个限定。

下图来自: 彻底搞清楚promoter, exon, intron, and UTR

3.4分,简单的肠癌甲基化分析。主要涉及差异分析、关联分析、功能注释。

解读: 如何从甲基化入手,轻松整篇预后标志物的文章

1、 数据质控 :共485,577个基因座的DNA甲基化数据,在预处理数据和质量控制后,保留了467,971个探针。

2、 差异筛选 :minfi包筛选DMR(差异化甲基化区域),这一步类似于RNA-Seq的筛选差异基因。结果:最终得到675个差异甲基化区域,其中654个上调。

3、 注释和功能

3-1 DMR的注释 :这些DMR区域与基因的关系是什么呢?我们利用这些差异甲基化区域的位置与基因的各个元件位置的关系,观察这些差异甲基化区域主要分布在基因的哪些位置上。结果:上调的甲基化区域大多数位于基因的第一外显子,5'UTR,TSS200,TSS150和基因体中,而只有少数UMR位于基因间和3'UTR中区域,同样的下调的甲基化区域也有相同的现象。

3-2 DMR与CpG岛的关系 :差异甲基化区域与CpG岛的关系如图,从中可以看出上调的差异甲基化区域主要聚集在CpG岛区域,而下调的差异甲基化区域主要聚集在低CpG岛密度区域。

总结:

在本研究中,在大量COAD样品中进行了DNA甲基化谱的综合分析,以研究COAD中存在的改变的DNA甲基化模式。COAD样品和邻近组织样品之间的DNA甲基化谱的比较揭示了COAD样品中异常的DNA甲基化变化,并导致675个DMR的鉴定,包括654个高甲基化和21个低甲基化DMR。这些结果与先前的研究结果一致,即DNA高甲基化是结直肠癌的常见特征。

此外,这些DMR可用于有效区分COAD样品和相邻组织样品,这表明DMR可能在COAD的形成中具有致病作用。基因组分析显示,DMR主要位于启动子区域(包括第1 外显子,5'UTR和TSS)和体区,这与之前在其他类型癌症中的观察结果一致。在基因间和 3'UTR 区域中仅发现了一小部分DMR。此外,大多数高甲基化DMR位于CpG岛中,而大多数低甲基化DMR不位于CpG岛或注释基因中。

每周文献 2021-08-02

大家好,最近因为有需要了解甲基化作用,看到这篇文献,拿出来给大家分享一下,这是一篇关于揭示蛋白BANP与基因组的CGCG基序结合,从而激活必需基因表达的文章。

文章题目: BANP opens chromatin and activates CpG-island-regulated genes (BANP打开染色质并激活CpG岛调节基因)

期刊: Nature

影响因子: 2020_IF = 49.962; 中科大类: 综合性期刊 1区; 中科小类: 综合性期刊 1区; JCR分区: Q1

发文单位: 瑞士弗雷德里克-米歇尔生物医学研究所,瑞士生物信息学研究所和瑞士巴塞尔大学等5家单位。

摘要: DNA甲基化是一种化学修饰,可以抑制基因的活性。哺乳动物基因组中RNA聚合酶II产生的大多数基因转录起始于CpG岛(CGI)启动子,然而我们对其调控的理解仍然有限。造成这种原因一方面是由于我们对转录因子、它们的DNA结合基序以及具体基因组结合位点在给定的细胞类型中起何种作用的信息不完整。另一方面,还有一些没有已知结合基序的孤儿基序,如CGCG元件,它与人类组织中的高表达基因相关,并在CGI启动子子集的转录起始点附近富集。在研究中,作者将单分子足迹与互作蛋白质组学相结合,以确定BTG3相关核蛋白(BANP)在小鼠和人体基因组上作为转录因子结合该元件。作者发现BANP是一种强大的CGI激活剂,可以控制多能干细胞和终末分化神经元细胞中的基本代谢基因。BANP结合在体外和体内被其基序的DNA甲基化所排斥,这在表观遗传学上限制了大多数与CGI的结合,并解释了癌细胞中异常甲基化CGI启动子的差异结合。当与非甲基化基序结合时,BANP打开染色质和核小体相。这些发现证实了BANP是一组重要基因的关键激活因子,并提出了一个模型,其中CGI启动子的活性依赖于能够打开染色质的甲基化敏感转录因子。

主要结果:

1. BANP在体内与CGCG元件结合

为了测试单个基序,作者开发了一种简化方法,将单个转录因子基序置于体外衍生序列中,并使用重组酶介导的盒交换(RMCE)将其插入小鼠胚胎干(ES)细胞的特定基因组位点。这些基序的占有率由单分子足迹(SMF)监测,SMF使用甲基转移酶足迹并通过亚硫酸氢盐测序获得(图1a)。在测试CGCG元件时,作者观察到一个显著的足迹(图1b),表明了未知因子的占有。为了鉴定结合蛋白,作者使用含有CGCG元件的寡核苷酸作为诱饵,在小鼠ES细胞核提取物中进行亲和纯化。质谱检测发现BANP是唯一的富集蛋白(图1c)。BANP是哺乳动物BEN结构域蛋白之一,被认为与核基质相关,并在转录抑制中发挥作用。接着,作者通过ChIP–seq确定检测到小鼠ES细胞中1302个可重复的峰(图1d),对前500个峰的独立k-mer富集分析确定CGCG元件为主要序列(图1e),称之为BANP基序。这些基序主要存在于启动子中,尤其是CGI启动子(图1d,f)。同时作者发现几乎90%的启动子与基序是结合的,有12%的基序位于远端(图1g)。这与BANP结合单个基序的能力不一致(图1b)。作者猜测BANP结合可能受到DNA甲基化的抑制。

2. BANP对DNA甲基化敏感

在DNMT三重敲除(TKO)细胞中,BANP在野生型细胞中甲基化的其他基序处结合并打开染色质(图2a,b)。尽管大多数这些基序位于启动子的远端,但一些启动子也表现出结合增强和高表达,表明BANP为依赖性上调。为了在体外检测BANP的DNA结合,作者使用纯化的重组全长蛋白进行电泳迁移率转移和荧光偏振分析,发现BANP可以在体外特异性结合其非甲基化基序,基序甲基化使亲和力降低六倍(图2c)。为了确定BANP的结合特异性及其甲基化敏感性在人类细胞中是否保守,作者在两个表现出DNA甲基化异常模式的人类癌症细胞系中测定了其结合情况(图2d),得出BANP在体外和体内特异性地直接结合到其未甲基化CGCG基序,体内结合解释了癌症特异性基因组结合事件。

3. BANP驱动重要基因表达

作者使用RMCE系统将一个具有三个BANP基序的报告基因插入基因组,并将其与已知CGI结合激活子的三个基序和已建立的强CGI衍生启动子(PGK)进行比较(图3a)。BANP基序导致表达增加近3000倍,比其他测试基序(如NRF1)至少高15倍,仅比PGK启动子低3.5倍,表明BANP基序在染色质中具有强烈的自主激活。在BANP降解后,大多数结合基因快速下调(图3b,c),同时在蛋白质组中也检测到延迟但镜像下调(图3d)。这些结果表明BANP是CGI岛调控基因的一个重要子集的有效激活剂。虽然BANP结合在神经元中大部分是保守的,但一些CGI启动子显示出差异结合(图3e,f)。

4. BANP在CGIs处打开染色质

作者通过ATAC-seq分析转座酶可及染色质来确定BANP对开放染色质的影响。在BANP降解后,一小时后可及性已经降低,后续变化很小(图4a,b),这表明BANP在其CGCG基序中(甚至在CGI中)一直具有较高的可及性。为了了解结合是否影响核小体及其位置,作者进行了MNase-seq,确定了结合的BANP基序周围的高相位核小体(图4a,c,)。最后,作者检测了初生组织中BANP基序是否存在开放染色质。DNaseI足迹被检测到主要在CGI(图4d),这表明BANP结合和染色质开放在所有检测的初生组织中都是保守的。

在该研究中,作者鉴定出一种新的开关,它可以调控小鼠和人类基因组中的必需基因。识别缺失的基因开关及其功能对于全面了解健康和疾病的分子基础至关重要。

文中所有图片均来自BANP opens chromatin and activates CpG-island-regulated genes

文中有表述不当的地方,是我的问题,请在后台与我联系修改,也可以自行阅读原文,理解与支持。如有团体或个人认为本文侵犯您的权利,请及时联系我删除。

文章链接地址:

参考文献:

Grand, R.S., Burger, L., Gräwe, C. et al. BANP opens chromatin and activates CpG-island-regulated genes. Nature (2021).

单细胞DNA甲基化研究基础篇:从实验策略到数据分析方法简介

DNA甲基化是细胞分裂过程中遗传的一种表观遗传标记,影响细胞的生物学功能。而单细胞水平上的全基因组甲基化分析将有助于深入了解转录调控和细胞异质性。

单细胞DNA甲基化研究怎么做?

来自韩国的科研人员在《 Biomolecules 》发表综述文章, 介绍了单细胞DNA甲基化分析方法,包括实验策略和数据分析;此外,还介绍了相关科研应用并讨论了未来的发展。

注:此篇综述没有介绍5mC分析方法,虽然介绍了许多多组学方法,但每种方法的单独分析过程未作深入讨论。

亚硫酸氢盐转化法被认为是DNA甲基化分析的金标准。 由于它的高转化率(>99%)、可重复性和通过商业试剂盒的简单易用性而受到研究人员的青睐。然而,亚硫酸氢盐转化法采用了导致DNA降解的苛刻反应条件,PBAT的开发即是为了解决降解造成的损失问题。

RRBS和WGBS是流行的全基因组甲基化分析方法。 这两种方法都包括亚硫酸氢盐转化和NGS制备。主要区别在于,RRBS使用适当的限制性内切酶和大小选择来筛选富含GC的区域。WGBS(特别是MethylC-seq)的优势在于能够覆盖基因组中的大部分CpGs。与RRBS相比,WGBS的纯化和筛选过程相对简单。在WGBS中防止亚硫酸氢盐转化过程中的降解损失被认为是相对重要的,因此许多基于WGBS的单细胞方法往往是基于PBAT的。

多组学方法是根据甲基化分析方法与其他分析方法(RNA、染色质可及性)相结合来区分的。 例如scM&T-seq是基因组和转录组测序(G&T-seq)与scBS-seq的结合,G&T-seq是一种基于Smart-seq2识别DNA和RNA的方法。此外,应用于单细胞甲基化分析方法的技术,如PBAT,也可以类似地应用于NOME-seq,NOMe-seq可以根据核糖体的存在与否,利用GpC甲基转移酶的染色质可及性差异,确认双硫酸盐转化的DNA中开放染色质和CpG甲基化。scCOOL-seq、iscCOOL-seq和scNome-seq可以一起监测染色质可及性和CpG甲基化。

通过转化以外的方法观察甲基化主要分为两类:利用甲基胞嘧啶的亲和结合和利用限制性内切酶对甲基胞嘧啶的敏感性。MBD-seq和MeDIP-seq是具有代表性的基于亲和性的方法。 基于亲和力的方法不适合在单细胞规模上应用 ,因为这些方法基于DNA片段产生平均DNA甲基化谱,这不允许区分单个细胞中DNA甲基化模式的差异。然而,与基于亲和力的方法不同, 基于MSRE的方法可以被改进, 使用MSRE的单细胞方法的细化可以在Methyl-seq中看到,scCGI-seq测量甲基化的方式与Methyl-seq类似。

在测序实验之后,包括RRBS或WGBS,需要对数据进行预处理。预处理步骤可分为 数据质控(QC)、序列修剪和比对 ,例如使用 FastQC 测量总体的基本测序数据质量,使用 Trim Galore!、fastp和Trimmomatic 等软件修剪,下表列出了常用的比对工具。

甲基化分析的主要目的是探索构成样本、器官和疾病状态(包括癌症)之间差异的表观遗传学证据。为了发现这些差异,需要一个暗示此概念的数值,一个广泛使用的术语是β值。在甲基化调用后,进行后续分析,如可视化分析的t-SNE,聚类分析,以及识别差异甲基化胞嘧啶(DMCs)或差异甲基化区域(DMRs)

上述方法主要依赖于单个CpG位点的甲基化水平。最近的甲基化分析利用了每个reads的甲基化模式来诊断疾病,尤其是癌症。这种新的分析概念是基于甲基化的生物学特性,即除非出现从头甲基化,否则相邻CpG位点之间有保持甲基化的趋势。 该读取模式方法能够检测具有疾病信号的DNA分子,并且具有增加疾病信号检测机会的可能性。 例如,一项大型液体活组织检测研究设计了一个集成分类器,根据读取模式分析对肿瘤类型进行分类,并在早期癌症的检测中显示出显著的结果。此外,通过甲基化模式对肿瘤衍生的DNA分子进行量化是观察肿瘤负担的另一种方法。

生殖细胞或胚胎细胞的成熟受到特定基因表达的影响,这与DNA中的甲基化水平相关。例如基于植入前的胚胎细胞的甲基化特征,利用单细胞甲基化测序,通过对早期胚胎系追踪的研究,研究植入前细胞甲基化的机制及其现象。研究团队观察到非CpG甲基化在卵母细胞成熟过程中不断积累,说明非CpG甲基化与CpG甲基化在卵母细胞成熟过程中的作用不同。

在疾病患者中,DNA甲基化的模式与健康人不同。在各种疾病中,癌症尤其具有正常细胞所不具有的DNA甲基化模式,从而导致基因表达水平的差异。在对具有这种异质性的癌症研究中,需要使用多组学方法,将基因组变异和RNA表达结合起来进行分析。例如一个研究小组最近开发了一种称为scTrio-seq2的方法,它整合了单细胞转录组和单细胞甲基化测序数据。多项研究表明使用单细胞甲基化测序(sc-methyl-seq)的多组学方法可以克服先前方法的局限性,并且具有更好的鉴别能力。因此,sc-methyl-seq可用于各个领域,以解决与生物过程和疾病相关的基本问题。

单细胞DNA甲基化研究仍存在一些问题。其中第一个问题是亚硫酸氢盐转化的降解问题,这是目前的金标准。然而,在数量有限的单细胞尺度上,由于降解而造成的损失比在体积尺度上更严重。为了解决这个问题,采用了PBAT等技术,但其性能无法与使用大量DNA的方法相比。近年来,利用TET酶活性的方法,如TAPS和EM-seq,已经被开发出来,并作为一种解决慢性降解问题的方法而受到关注。另一个问题是一个明确的标准分析过程还没有建立。由于这些挑战,目前最好的方法是引入多组学方法进行交叉验证。

随着数据采集的成本正在逐渐降低和数据联盟的建立(例如国际人类表观基因组联盟(IHEC)等),全面数据的积累可以提供一个了解甲基化的机会。关于甲基化证据的积累将使大家有可能找到因不同组织类型、不同实验或环境条件以及异质性疾病(如癌症)而波动的甲基化热点区域。此外,通过积累的数据发现细胞类型的特异性标记,将有利于通过单细胞DNA甲基化数据的可视化来进行细胞异质性分析,包括在t-SNE图中分配细胞集群。相信对甲基化及其在疾病中的生物学作用之间关系的理解将随着未来进一步的数据而得到揭示。

首发公号:国家基因库大数据平台  

参考文献

Ahn J, Heo S, Lee J, et al. Introduction to Single-Cell DNA Methylation Profiling Methods[J]. Biomolecules, 2021, 11(7): 1013.

今天的内容先分享到这里了,读完本文《山西甲基化调控__山西甲基化文章》之后,是否是您想找的答案呢?想要了解更多,敬请关注www.zuqiumeng.cn,您的关注是给小编最大的鼓励。