地震属性裂缝预测技术
今天运困体育就给我们广大朋友来聊聊西甲预测分析完美45yb点in,希望能帮助到您找到想要的答案。
地震属性裂缝预测技术

霍志周 董 宁 许 杰 周 刚
(中国石化石油勘探开发研究院,北京 100083)
摘 要 随着石油天然气资源的开发利用,常规孔隙型油气藏储量日益减少,开发难度逐渐增大,石油与天然气勘探方向逐渐由浅部转向深部、由常规油气藏转向特殊油气藏,特别是裂缝型储层。国内裂缝型储集层(碳酸盐岩、致密砂岩)的分布十分广泛。裂缝型油气藏勘探、开发的最大难点,是对储层岩体中裂缝发育程度和分布范围的预测。地震属性(曲率、相干)从不同角度反映了地层受构造应力挤压时地层的变形和破裂情况。因此,通过对曲率和相干属性的计算,可以对地层中裂缝发育情况进行预测。本文利用地震属性(曲率、相干)对YB地区碳酸盐岩裂缝型储层进行了预测,精细地刻画出研究区碳酸盐岩储层中的断裂分布和展布规律,为该区裂缝的综合描述提供了依据。
关键词 裂缝预测 地震属性 曲率属性 相干属性
Seismic Attribute Fracture Prediction Techniques
HUO Zhizhou,DONG Ning,XU Jie,ZHOU Gang
(Exploration and Production Research Institute,SINOPEC,Beijing 100083,China)
Abstract With the development and utilization of oil and gas resources,reserves of oil and gas reservoirs of conventional porosity become less and less,the development becomes harder and harder,the oil and gas exploration gradually turns from shallow and conventional hydrocarbon reservoirs to those which are deep and special,especially the fractured reservoirs.Fractured reservoirs(carbonates,tight sands)are widely distributed inland.The most difficult thing in fractured reservoir exploration and development,is the prediction of fracture development and distribution in the reservoir rocks.Seismic attributes(curvature,coherence)can indicate the abruption and deformation of stratum by tectonic stress squeezing from different angles.Therefore,through the calculation of the curvature and coherence properties,we can predict the development of the formation fractures. In this paper,seismic attributes(curvature,coherent)are used to forecast the fractured carbonate reservoirs in YB area,finely depicting the fracture distribution in carbonate reservoirs and the distribution rule for the area cracks,providing a basis for the comprehensive description of fractures in this area.
Key words fracture prediction;seismic attributes;curvature attributes;coherence attributes
国内外无论是陆地还是海上,都已经在砂岩、泥质岩、碳酸盐岩和火山岩中发现了裂缝型储集层,并获得大量工业油气流。据美国能源部预测:在2030年以前,美国国内一半的天然气产量将来自低渗透的裂缝型储层。国内裂缝型储集层(碳酸盐岩、致密砂岩)的分布十分广泛。据统计,我国裂缝型油气藏的储量占已探明油气储量的三分之一左右。“九五” 期间,我国四分之三的可用油气储量在低渗透致密裂缝型油田中。因此,裂缝型油气藏的勘探对我国未来石油工业的发展有着十分重要的意义
[1,2]
。
裂缝型储层是指以裂缝为主要储集空间、渗流通道的储集层。由于缺乏有效的预测手段,人们对裂缝发育和分布规律的研究不够准确,而使油气井钻探和油气田开发方案达不到预期目的,造成的间接损失也是难以完全统计的。裂缝型油气藏勘探、开发的最大难点,是对储层岩体中裂缝发育程度和分布范围的预测。传统方法是借助岩心露头和井数据来进行裂缝检测,虽然岩心露头资料能提供直观、可靠的裂缝资料,综合各种测井资料能对裂缝进行准确识别,但岩心及测井资料控制点有限。通过理论研究和现场试验已经证明:利用地震各向异性特征和不连续性特征来识别、表征地下裂缝的走向、发育程度及分布范围是可行的。三维地震数据庞大的数据量使得三维叠后地震属性分析手段在裂缝预测方面仍然具有较为广阔的发展空间
[3~10]
。与精细的裂缝识别与预测相关的三维叠后属性分析是围绕地震反射波型式的突变(不连续性)而开展的,倾角/方位角分析、曲率分析、相干分析、频谱分解等技术
[11~20]
是近年来业界的研究亮点。
目前在断裂解释及裂缝预测中,曲率和相干属性已经得到广泛的应用。本文将详细论述曲率和相干属性的原理,并将该方法应用于塔里木YB地区碳酸盐岩储层的裂缝预测中,可以更客观、更精细地刻画碳酸盐岩油气藏的裂缝型储集体,从而达到寻找裂缝型油气藏的目的。
1 曲率技术原理
曲率用来描述曲线(或曲面)上任一点的弯曲程度,曲率越大曲线越弯曲。曲率的数值及其变化,不仅能够提供一个比较清晰的地质体形态特征,而且还对裂缝的判别有很好的指导作用。从几何地震学的角度看,反射点集合可以视为一个时间标量场,该标量场某一反射面的梯度反映的是该反射面的起伏变化率,即单位反射时间内反射面沿不同方向的变化增量,它表示的是反射曲面沿方向矢量所在法截面截取曲线的一阶导数——视倾角的大小;而该方向上的曲率定义为该曲线上密切圆半径的倒数,亦即为该方向上该曲线的二阶导数。由此可见,看似复杂的地震几何属性系列不过是沿不同方向计算的一阶、二阶导数体。但是,要准确地获取地震数据的曲率信息也是非常困难的。
通常,地震的曲率属性反映了地层受构造应力挤压时层面弯曲的程度。裂缝在曲率较大的地方容易发育,裂缝方向平行于最小曲率方向。在诸多曲率属性之中,最大正曲率和最小负曲率被认为对裂缝识别最有价值。最近几年较为突出的进展是Marfurt、Chopra等在三维曲率体计算、构造倾角滤波、多尺度曲率分析等方面的研究成果
[21~23]
。
1.1 曲率的计算公式
曲率作为描述曲线(或曲面)上任一点的弯曲程度的数学参数
[24,25]
,与曲线y=f(x)的二阶导数密切相关,其数学表达式为
油气成藏理论与勘探开发技术(五)
对于三维地震数据体的曲率计算,首先,要在选取的时窗中,在一定范围内按一定步长同时扫描倾角和方位角,求取相应倾角和方位角的相干系数,扫描得到的相干系数形成了一个关于倾角和方位角的曲面。然后,通过曲面拟合,找出曲面上最大的相干系数所对应的倾角和方位角,则认为它是真实的倾角和方位角。在此计算地震数据倾角、方位角方法的基础上,使用高阶逼近的方式,可以比较准确地拟合出待估点附近的曲面。
具体的做法是,以待估点为中心,其所在的小面元可近似地看成是一个二维曲面,曲面方程可以由下式表示:
油气成藏理论与勘探开发技术(五)
式(2)中的系数可由以下表达式求得:
油气成藏理论与勘探开发技术(五)
1.2 各种曲率的定义
根据式(2)中的系数,可以算出地震层位的各种曲率属性
[19,21,24~26]
。
1.2.1 平均曲率km
平均曲率是空间曲面上某一点任意两个相互垂直的正交法向曲率的平均值。如果一组相互垂直的正交法向曲率可表示为k
1
、k
2
,那么平均曲率k
m
表示为
油气成藏理论与勘探开发技术(五)
1.2.2 最大曲率k
max
和最小曲率k
min
过曲面上某一点的无穷多个正交法向曲率中存在一条曲线,使得该曲线的曲率绝对值为最大,这个曲率称为该曲面的最大曲率k
max
,垂直于最大曲率的曲率称为最小曲率k
min
,这两个曲率属性为主曲率,计算表达式为
油气成藏理论与勘探开发技术(五)
1.2.3 高斯曲率k
g
两个主曲率的乘积即为高斯曲率,又称总曲率,反映某点总的弯曲程度。高斯曲率k
g
被定义为主曲率的乘积
油气成藏理论与勘探开发技术(五)
1.2.4 最大正曲率k
pos
和最小负曲率k
neg
在所有法向曲率中的最大正值和最小负值即分别为最大正曲率k
pos
和最小负曲率k
neg
,其计算表达式为
油气成藏理论与勘探开发技术(五)
1.2.5 倾向曲率k
d
与走向曲率k
s
在最大倾角方向求取的曲率定义为倾向曲率,在走向上求取的曲率叫做走向曲率。倾向与走向曲率的计算公式分别为
油气成藏理论与勘探开发技术(五)
1.3 曲率属性的解释
[21,25,26]
曲率用来反映几何体的弯曲程度。在构造解释中,如果我们根据层位的解释数据计算曲率,自然就可以定量来描述其构造特征,图1给出了背斜、单斜、向斜、平层和断层的曲率描述。其中,背斜的曲率为正,向斜的曲率为负,而且褶皱越厉害,曲率值越大;平层和单斜层的曲率为零;断层在平滑后可近似认为其曲率有由正到负或由负到正的变化。显然,上述曲率对于单斜和水平地层的区分是无能为力的,对于平行断层、水平面上或沿层面上有方向变化的复杂构造,也是无能为力的,必须要借助于以二维曲面分析为基础的曲率属性。在刻画断裂、地质体方面,最大正曲率、最大负曲率是最容易计算也是最常用的曲率属性
[2,21,25,26]
。
图1 2D曲率属性示意图
[27]
2 相干技术原理
相干分析技术主要用于描述地震数据的空间连续性,通过对地震波形纵向和横向相似性的判别,得到地震相干性的估计值。相似地震道有较高的相干系数,对应于连续性较好的地质体,而较低的相干系数对应于连续性较差的地质体,如断层、褶皱等
[28,29]
。
Bahorich和Farmer在1995年首次提出了地震相干体技术,其方法是在经典的归一化互相关基础上建立的,算法效率高,但抗噪能力较差,适用于高信噪比的地震数据,称为第一代相干算法
[30,31]
(简称C1算法)。Marfurt等在1998年提出了沿倾角(方位角)、基于多道相似性的第二代相干算法
[32]
(简称C2算法),该算法提高了抗噪能力和计算结果的垂向分辨率,但是计算道数的增加降低了侧向分辨率和计算时间。1999年,Gersztenkorn和Marfurt提出了基于本征结构的第三代相干算法
[33]
(简称C3算法),是通过计算协方差矩阵的特征值来得到相干属性的方法。该算法克服了第一代、第二代算法的一些缺点,虽然具有最佳的横向分辨率,但对大倾角敏感性稍差,而且计算耗时较大。
此后又有一些新的、改进的第三代相干算法,如Randen等
[34]
提出的几何结构张量方法,这种几何结构张量算法包含了反射界面的倾角和方位角信息,可以稳健地估算时窗内分析点的反射界面的倾角和方位角。张军华等
[35]
将小波多分辨率分析应用到本征值结构的相干计算中,提高了相干体的分辨率,增强了抗噪声的能力。宋维琪
[36]
等在本征值结构的基础上,提出了地震多矢量属性相干数据体的计算方法。该算法在属性提取方面,既考虑了方位,又考虑了倾向,即计算地震矢量属性。通过计算综合相干值,提高了地质体边界的检测能力。
2.1 第三代相干算法的计算公式
假设在一个分析窗口中有j道地震数据,N个采样点,用矩阵D表示三维地震数据体:
油气成藏理论与勘探开发技术(五)
式中:d
nj
为第j道的第n个采样点值。
矩阵D中的第n行向量 表示数据体的第n个采样点的集合。假设每个计算窗口中数据的平均值为零,则第n个采样点的协方差矩阵为
油气成藏理论与勘探开发技术(五)
如果d
n
是个非零向量,则协方差矩阵 是一个秩的半正定对阵矩阵,有一个不为零的特征值。整个数据体的协方差矩阵为
油气成藏理论与勘探开发技术(五)
油气成藏理论与勘探开发技术(五)
协方差矩阵C的秩可以表示分析窗口中地震数据的自由度,而特征值的大小可以定量地描述数据体的变化程度。通常,对于J×J的协方差矩阵,如果有J个独立的本征值,那么J表示空间分析时窗内地震道的道数。另一方面,矩阵的本征值是按降阶排列的,本征向量之间是斯密史正交的,任何2个本征向量的内积为零,第一本征值和第一本征值向量代表了矩阵的主要变化量,其他的依次类推,所起的作用逐渐降低。一般地只需少数几个本征值和本征向量就能代表整个数据体95%的信息量。事实上,本征值结构的相干体估算只用了第一本征值,即
油气成藏理论与勘探开发技术(五)
式中:分母代表了分析时窗内的所有能量;λ
1
表示协方差矩阵的第一本征值。如果分析时窗内的所有道的波形都一致,则本征值相干系数E
c
等于1。
第三代相干技术的最大优点是抗噪能力和分辨率更高,但需要消除地层倾角的影响,首先需要求出各道之间的倾角和方位角值,拟合成一个光滑的曲面,由此构建地震子体矩阵D,从而提高了该算法的精度。
2.2 相干属性的解释
相干属性是基于局部地震波的不连续性,运用相关性原理突出相邻道之间地震信号的不连续性,进而达到检测断层和反映地质异常特征展布的目的。根据相关值高低的空间变化,能快速识别出断层与裂缝的发育带。地层不连续性越强,相邻地震数据道的相关程度越低,对应的相关值也就越小。
由于地震反射不连续性特征相应于地质异常具有多尺度性。Partyka等
[37]
提出了谱分解方法,利用不同频带的地震数据识别不同尺度的地质体。Zeng等
[38]
利用分频地震数据研究地质沉积体时发现,某些单频数据体对地质体边界、范围的刻画比常规有限带宽的地震数据体更清楚,反映的地质细节也更丰富,从而为频率域的地震地质解释提供了一条很好的思路。通过生成不同频率数据体,利用纵横向上时频点或时频段上的频谱差、频谱比、频谱下降率等描述不同尺度的地震波衰减特征,可以识别断层和裂缝,揭示裂缝发育带,乃至对其含油气性进行检测
[39]
。
3 应用效果分析
塔里木盆地YB地区奥陶系碳酸盐岩储层受多期构造运动、岩相、成岩、古地貌等多重因素控制,储层空间非均质性强。钻探表明,该区奥陶系碳酸盐岩胶结作用强烈,原生孔隙几乎消失殆尽,宏观储集空间以裂缝与溶洞为主。本区储集层多位于断裂带裂缝发育区,表明裂缝对本区的岩溶储集层发育具有重要的建设性作用。岩心与薄片分析表明,本区奥陶系鹰山组风化壳裂缝开启程度高,裂缝不仅大大提高了储集层的渗流性能,而且沿裂缝溶蚀作用普遍发育,甚至形成溶蚀缝洞体。因此该区的断裂对油气的富集起重要作用,裂缝发育的强度与方向等要素对有效储层分布有重要的意义。
对该区三维地震数据分别进行了曲率属性和相干属性计算,主要研究的储层为奥陶系鹰山组的碳酸盐岩。图2为YB地区奥陶系储层的曲率属性裂缝检测结果,可以看出该区的断裂及与之伴生的微裂缝发育区在曲率属性上表现为线条状或网团状的异常。图2(a)中的最大正曲率属性对界定断裂和断裂的几何形态非常有效,以该属性表示的断裂表现为正曲率值。图2(b)中的最大负曲率同最大正曲率具有非常相似的特征。图2(c)中的高斯曲率虽然表现出与裂缝有关系,但它却没有显示出分散的断层。图2(d)中的平均曲率为最小和最大曲率的平均值,并且受最大曲率的制约。平均曲率表示出形态的高与低,给人以断层落差的感觉,通过颜色的变化可以判别出断层的落差。
图2 曲率属性检测裂缝分布
为了比较曲率属性与相干属性在裂缝检测方面的差异,沿目的层提取了相干属性。在提取相干属性时,首先对地震数据进行了谱分解,分成不同频带范围的单频数据体,然后对这些单频数据体分别计算相干属性。图3和图4分别展示了全频相干数据和40Hz单频相干数据在目的层的剖面和平面特征。对比分析发现,40Hz高频体对小断层的反映更为清晰和准确。图3和图4表明,利用分频相干数据体的多尺度分辨率特性可以识别一些常规数据难以发现的小断裂和裂缝发育带。
对比曲率属性和相干属性可以看到,曲率属性包含了更多的有关地层的不连续性信息,且其显示的断层更清晰、更容易识别,搭接关系明朗,更适合断层的快速解释和目标评价。但是曲率是一种基于二阶导数的方法,对地层中的任何噪声污染都很敏感。因此在计算曲率时,研究对象的尺度是需要重点考虑的另一个因素。同时在对曲率属性进行裂缝分析时要与相干属性等相结合,这样才能更为准确地得到裂缝空间的分布信息。
为了在一张图上反映更丰富的裂缝信息,在上述研究的基础上,选择对研究区断裂及裂缝发育特征敏感的各种属性体进行数据融合、重构,可以得到更为丰富的断层及裂缝发育带信息(图5)。
4 结论
本文利用YB地区的三维地震资料,分别计算了各种曲率属性、不同频率的相干属性,通过多属性的综合分析和研究,较好地揭示了该区奥陶系碳酸盐岩储层的裂缝分布和发育情况。通过研究可以看出:
图3 全频带相干数据剖面(a)和40Hz相干数据剖面(b)
图4 沿层全频带相干切片(a)和40Hz相干切片(b)
图5 裂缝综合预测成果图
1)曲率属性对地层的弯曲程度非常敏感,而地层的非塑性弯曲程度又与裂缝发育状况高度相关,因此曲率属性可以比较有效地识别裂缝发育带。
2)高频的相干数据体可以识别一些全频带数据难以发现的小断裂和裂缝发育带,可以得到更为丰富的断层及裂缝发育带信息。
3)针对越来越复杂的地质情况,采用单一的属性已不能很好地解决地质问题,同样不能单独判断裂缝发育带,应结合多种属性分析才能提高预测成果的精度。多种方法相互结合、相互验证,可以减少预测结果的多解性。
所有地震属性的计算都受地震资料的频带宽度和信噪比所限,对于更小尺度裂缝的预测,还需在拓展频带、提高地震分辨率等方面开展进一步研究工作。
参考文献
[1]杨晓,王真理,喻岳钰.裂缝型储层地震检测方法综述[J].地球物理学进展,2010,25(5):1785~1794.
[2]苏培东,秦启荣,黄润秋.储层裂缝预测研究现状与展望[J].西南石油学院学报,2005,27(5):14~17.
[3]Grechka V,Tsvankin I.Feasibility of seismic characterization of multiple fracture sets[J]. Geophysics,2003(4):1399~1407.
[4]Bakulin A,Grechka V,Tsvankin I.Estimation of fracture parameters from reflection seismic data - Part Ⅰ:HTI model due to a single fracture set[J].Geophysics,2000(6):1788~1802.
[5]Bakulin A,Grechka V,Tsvankin I.Estimation of fracture parameters from reflection seismic data- Part Ⅱ:Fractured models with orthorhombic symmetry[J].Geophysics,2000(6):1803~1817.
[6]Bakulin A,Grechka V,Tsvankin I.Estimation of fracture parameters from reflection seismic data- Part Ⅲ:Fractured models with monoclinic symmetry[J].Geophysics,2000(6):1818~1830.
[7]Pérez M A,Grechka V,Michelena R J.Fracture detection in a carbonate reservoir[J].Geophysics,1999(4):1266~1276.
[8]贺振华,胡光岷,黄德济.致密储层裂缝发育带的地震识别及相应策略[J].石油地球物理勘探,2007(2):190~195.
[9]张延玲,杨长春,贾曙光.地震属性技术的研究和应用[J].地球物理学进展,2005,20(4):1129~1133.
[10]喻岳钰,杨长春,王彦飞,等.瞬时频域衰减属性及其在碳酸盐岩裂缝检测中的应用[J].地球物理学进展2009,24(5):1717~1722.
[11]Chopra S,Marfurt K J.Volumetric curvature attributes add value to 3D seismic data interpretation[J].The Leading Edge,2007(7):856~867.
[12]Al Dossary S,Marfurt K J.3D volumetric multi-spectral estimates of reflector curvature and rotation[J].Geophysics,2006,71(5):41~51.
[13]Marfurt K J.Curvature attribute applications to 3D surface seismic data[J].The Leading Edge,2007,26(4):404~414.
[14]Chopra S.Coherence Cube and beyond[J].First break,2002(1):27~33.
[15]McClymont A F,Green A G,Streich R,et al.Visualization of active faults using geometric attributes of 3D GPR data:An example from the Alpine Fault Zone,New Zealand[J].Geophysics,2008(2): B11-B23.
[16]Chopra S,Alexeev V.Applications of texture attribute analysis to 3D seismic data[J].The Leading Edge,2006(8):934~940.
[17]王从镔,龚洪林,许多年,等.高分辨率相干体分析技术及其应用[J].地球物理学进展,2008,23(5):1575~1578.
[18]饶华,李建民,孙夕平.利用分形理论预测潜山储层裂缝的分布[J].石油地球物理勘探,2009,44(1):98~103.
[19]王雷,陈海清,陈国文,等.应用曲率属性预测裂缝发育带及其产状[J].石油地球物理勘探,2010,45(6):885~889.
[20]孔选林,唐建明,徐天吉.曲率属性在川西新场地区裂缝检测中的应用[J],石油物探,2011,50(5):517~520.
[21]柏冠军,赵汝敏,杨松岭,等.地震曲率技术在地震资料解释中的应用[J].中国工程科学,2011,13(5):23~27.
[22]Sigismondi M E,Soldo J C.Curvature attributes and seismic interpretation:Case studies from Argentina basins[J].The Leading Edge,2003(11):1122~1126.
[23]Chopra S,Marfurt K.Emerging and future trends in seismic attributes[J].The Leading Edge,2008(3):298~318.
[24]Roberts A.Curvature attributes and their application to 3D interpreted horizons[J].First Break,2001,19(2):85~100.
[25]杜文凤,彭苏萍.利用地震层曲率进行煤层小断层预测[J].岩石力学与工程学报,2008,27(增1):2901~2906.
[26]Chopra S,Marfurt K.Curvature attribute applications to 3D surface seismic data[J].The Leading Edge,2007,26(4):404~414.
[27]Chopra S,Marfurt K.Seismic curvature attributes for mapping faults/fractures,and other stratigraphic features[J].CSEG Recorder,2007,11:37~41.
[28]王志萍,秦启萍,苏培东,等.LZ地区致密砂岩储层裂缝综合预测方法及应用[J].岩性油气藏,2011,23(3):97~101.
[29]王振卿,王宏斌,龚洪林.地震相干技术的发展及在碳酸盐岩裂缝型储层预测中的应用[J].天然气地球科学,2009,20(6):977 ~981.
[30]Bahorich M S,Farmer S L.3-D seismic coherency for faults and stratigraphic features[J].The Leading Edge,1995,14(10):1053~1058.
[31]苑书金.地震相干体技术的研究综述[J].勘探地球物理进展,2007,30(1):7~15.
[32]Marfurt K J,Kirin R L,Farmer S H,et al.3-D seismic attributes using a running window semblance -based algorithm[J].Geophysics,1998,(4):1150~1165.
[33]Gersztenkorn A,Marfurt K J.Eigenstructure based coherence computations as an aid to 3-D structural and stratigraphic mapping[J].Geophysics,1999(5):1468~1479.
[34]Randen T,Monsen E ,Signer C,et al.Three dimensional texture attributes for seismic data analysis[J].SEG Technical Program Expanded Abstracts,2000:668~671.
[35]张军华,王月英,赵勇,等.小波多分辨率相干数据体的提取及应用[J].石油地球物理勘探,2004,39(1):33 ~38.
[36]宋维琪,刘江华.地震多矢量属性相干数据体计算及应用[J].物探与化探,2003,27(2):128~130.
[37]Partyka G,Gridley J,Lopez J.Interpretational applications of spectral decomposition in reservoir characterization[J].The Leading Edge,1999,18(3):353~360.
[38]Zeng H L,John A,Katherine G J.Frequency-dependent seismic stratigraphy[J].SEG Technical Program Expanded Abstracts,2009:1097~1101.
[39]陈波,孙德胜,朱筱敏,等.利用地震数据分频相干技术检测火山岩裂缝[J].石油地球物理勘探,2011,46(4):610~613.
今晚的比赛,大家大胆预测一下(详细点)
21:00 多哥VS瑞士
多哥VS瑞士 瑞士还有出线希望多哥基本没戏最后场又是对法国.所以瑞士会狠拼。但是,多哥的实力并不时鱼喃部队,只是经验不够丰富,见是不多,所以教联会安排球员不要急于求成,要稳扎稳打,假如上半场打不开局面,下半场会发挥自己的冲击力。瑞士N多球星都在多家大俱乐部英超意甲西甲,势力不容小视,第一场对法国队就可以看出。但是,教练要首先做好赛前动员,放下架子,有道是光脚的不怕穿鞋的,且千万不要让对方打出超水平。所以本人大胆预测瑞士小胜.
00:00 沙特VS乌克兰
沙特VS乌克兰H组的小组出线形式很明朗,西班牙基本没问题了.剩余三队都没有绝对的出线把握.所以两队都会用最大的全力去取胜利.预计拼得会很狠,从预选赛看乌克兰是一支非常有实力的球队,队中舍瓦又是欧洲足球先生实在怎样这个都不说了吧,而且是一支拼搏非常凶狠的球队.突尼斯和沙特与西班牙没有可比性,也就是说乌克兰输给西班牙并非世界杯末日。相反,沙特和突尼斯打平,无形之中帮了乌克兰的大忙,相当于鹬蚌相争,渔翁得利。沙特还是具备一定的攻击能力的,而且是属于技巧型球队.又关系出现的问题,所以沙特一样会放开来,大大进攻.如果不能胜,最后场对西班牙,出线希望渺茫.估计比分乌克兰会以1——2球的优势获胜
03:00 西班牙VS突尼斯
最后说,西班牙VS突尼斯,从西班牙的第一场来看,西班牙中场前场非常强大,而且配合行如流水.除开劳尔状态稍微不好来看,其他队友表现都非常完美。根据今年世界杯的形式,很多小组两轮过后渭经分明,所以西班牙也不会存有怠慢之心,一心想在第二轮确保出线,不和其他三对搅和第三轮。但是^西班牙存在一个状态问题,状态好放得开来打,状态差都看起死气沉沉.而突尼斯等非洲球队正好什么大碗都不怕,遇强不弱,遇弱不强.所以西班牙队也不会轻易获胜,预测比分会很高.西班牙获胜
第章 川东北元坝地区上二叠统长兴组台缘礁滩体生长特征及控制因素分析
陆永潮
1
付孝悦
2
邢凤存
3,4
陈雷
1
马义权
1
王超
1
1.中国地质大学资源学院,湖北武汉 430074;2.中石化南方勘探分公司,四川成都 610041;3.油气藏地质及开发工程国家重点实验室(成都理工大学),四川成都 610059;4.成都理工大学沉积地质研究院,四川成都 610059
摘要 元坝气田是中国继普光气田之后在四川盆地发现的又一大型礁滩岩性气藏,其储层主要发育于长兴组的台缘生物礁滩相,但是目前对于元坝长兴组生物礁滩体研究甚少。本章在井震结合的基础上,对元坝地区长兴组台缘生物礁滩体的生长发育及其控制因素进行了研究,研究结果表明,元坝地区长兴组台缘生物礁滩体内部发育5期相互叠置的高频生长单元,同时在平面上生物礁滩体具有向西北方向迁移的特征。元坝地区长兴组台缘生物礁滩体的发育受控于海平面变化、季风、洋流以及潮汐作用,其中短周期的海平面变化控制了生物礁滩体内部相互叠置的高频生长单元;季风及洋流控制了生物礁、滩体的北西向迁移;而潮汐作用直接导致了一系列垂直于礁滩体的潮汐水道的发育。
关键词 生物礁滩体 台地边缘 上二叠统长兴组 元坝地区
1 引言
元坝气田位于四川省广元、南充和巴中市境内,是继发现中国最大海相整装气田普光气田之后,在四川盆地发现的又一个千亿立方米储量的大型岩性气藏。第一期探明天然气地质储量1592.53×10
8
m
3
,其气藏埋深为6240~6950m,为国内埋深最大的海相气田。主要储层为长兴组—飞仙关组的礁滩相储层。
元坝地区的勘探始于2001年,2003年以来已经采集了200k m的2-D地震数据和2280k m
2
的3-D地震数据,2007年元坝1井试获日产天然气50.3×10
4
m
3
。目前元坝地区17口已完钻测试的海相探井中有16口井在海相储层试获工业气流,其中7井9层试获日产天然气超百万立方米,这预示着元坝地区台地边缘礁滩带油气勘探具有巨大的潜力和客观远景。
精细沉积建模是地震沉积学研究的基础,尤其是其可以在高精度等时框架中动态地恢复沉积体系的三维空间展布及其演化,是现代沉积学研究的主要方向。由于地表露头对于识别高频旋回界面和高频层序单元的时空展布具有得天独厚的优势,并可动态地分析沉积体系随时间的变化规律,取代了过去在单个时间段内所进行的静态的沉积模式或相模式分析的做法,因此所建立的露头沉积模型可客观地表征地下沉积储层的分布。本章在借鉴塔里木盆地奥陶系台缘礁滩体系(焦养泉、荣辉和王瑞等,2011)和川东北长兴组生物礁露头精细建模的基础上(Wu LQ、Jiao YQ and Rong H et al.,2012)(图1,图2),结合现代礁滩体的平面分布模型(图3),通过精细的井-震标定等方法,对元坝地区长兴组生物礁滩体的沉积特征和微相构成进行精细刻画。
图1 塔里木盆地巴楚地区一间房组生物礁滩体露头建模(据焦养泉、荣辉和王瑞等,2011)
图2 川东北开县红花、满月甘泉长兴组生物礁滩体露头建模(据Wu LQ、Jiao YQ and Rong H et al.,2012)
图3 现代大堡礁礁滩体微相类型及组合(据Google earth 卫星照片,2013)
2 区域地质背景
2.1 沉积环境及沉积相
元坝地区位于九龙山背斜、池溪凹陷和苍溪-巴中低缓构造带三者之间的交界处,其构造总体平缓,区内构造变形弱。长兴组沉积期,整个川东北地区以开阔台地相、台缘礁滩相、台缘斜坡相和陆棚相沉积为主(图4a)。
元坝地区位于开江-梁平陆棚的西侧,整体表现为宽缓的低角度缓坡台缘,台缘上生物礁滩发育,呈“之”字形展布,构成复杂镶边的台地边缘(图4b)。上二叠统长兴组沉积时期,在川东北地区整体下沉的背景下,元坝地区古地理面貌出现分化,东北部下沉快,沉降幅度大,成为深水区,沉积了一套硅质岩;而西南部地区沉降幅度小,为碳酸盐台地沉积环境,在台地与陆棚之间发育了台地边缘礁滩体及斜坡,长兴期末发生大规模海退,导致碳酸盐台地环境演变为台地蒸发岩环境,沉积了泥晶白云岩及泥质白云岩,台地边缘礁滩体高地貌区成为暴露浅滩,沉积了鲕粒灰岩(马永生、牟传龙和郭旭升等,2006)。
自从普光大气田发现以后,大量学者对川东北以及元坝地区开展了研究,对于该地区的沉积相类型及其特征有了比较详细的认识(段金宝、黄仁春和程胜辉等,2008;程锦翔、谭钦银和郭彤楼等,2010;陈宗清,2008)。在本章中,根据前人的研究,同时结合岩心、测井、露头等资料数据对元坝地区长兴组的沉积相类型及其特征进行了研究。总体来看,元坝地区长兴组沉积时期主要发育了开阔台地相、台地边缘生物礁滩体相、台地边缘斜坡相以及陆棚相。
图4 川东北上二叠统长兴组沉积相(a)(据Ma YS、Mou CL and Tan QY et al.,2007;陈宗清,2008,有修改);研究区上二叠统长兴组生物礁滩体的3D图像(b)
2.2 地层与层序地层
Wang BJ、Bao C and Lou Z et al.(1989)对四川盆地的地层进行了详细的研究,在整个元坝地区地层从前寒武一直到三叠纪均有发育(图5a),其中海相碳酸盐岩地层主要发育于二叠纪和三叠纪,而二叠纪以礁灰岩为主,由于该时期川东北地区经历了多期的变形及成岩作用,导致该时期的生物礁滩储层尤为发育。
元坝地区的长兴组下部以灰岩和生屑灰岩为主,主要为生屑滩沉积,上部则以生物礁滩灰岩为主,沉积相主要为台地边缘生物礁滩相,长兴组沉积末期,由于海退作用,导致生物礁滩体暴露,形成白云质生屑灰岩以及白云岩,其为长兴组内最重要的储层(图5b)。因此总体来看,元坝地区长兴组具有上礁下滩、礁滩共生的特点。
对于元坝地区长兴组的层序地层学研究,目前研究甚少,郭彤楼(2011),王国茹、郭彤楼和付孝悦(2011)对元坝地区长兴组进行了层序地层学研究,将其划分为两个Ⅲ级层序,每个层序识别出海侵体系域和高位体系域,并在每个体系域内划分了高频层序,同时确定了海平面变化曲线。本章对长兴组的层序划分方案与其一致,将长兴组划分为两个层序——SQP
2
c h
1
和SQP
2
c h
2
,同时结合小波变换对高频进行了更进一步的划分。其中SQP
2
ch
1
的海侵体系域可划分出1个准层序组和2个准层序,高位体系域可划分出1个准层序组和3个准层序;SQP
2
c h
2
的海侵体系域则可划分出2个准层序组和4个准层序;高位体系域可划分出3个准层序组和4个准层序(图5b)。SQP
2
ch
1
中以发育生屑滩为主,SQP
2
c h
2
则以发育生物礁滩为主,长兴组层序的总体特征为下部层序成滩,上部层序成礁。
图5 四川盆地地层综合柱状图(a)和川东北元坝地区YB27井长兴组层序地层分析图(b)(据Zhao WZ、Xu CC and Wang TS et al.,2011,有修改)
3 数据和方法
3.1 数据
本次研究区主要为元坝地区的元坝2井区,所用的数据包括218k m
2
的三维地震数据,地震工区内以及邻区普光气田的13口井的数字测井资料(有10口井位于工区内)以及3口井的岩心和镜下薄片。
3.2 方法
在本次研究中,对每口井都进行了层序划分,由于本次研究主要借助于地震剖面分析,因此界面的识别和标定对于本次研究至关重要,因此井震标定显得尤为关键,本文中利用Landmark软件进行合成记录,通过声波测井(的测量)和地震子波来生成合成记录。通过合成记录严格将井与地震进行匹配,赋予地震剖面的反射轴具体的地质意义,同时建立了元坝地区长兴组台缘礁滩体地质——地球物理响应模板(图6),在此基础上通过地震剖面分析以及地震属性提取对研究区内长兴组生物礁滩体的生长发育进行深入而准确的研究。
图6 元坝地区长兴组台地边缘生物礁滩体微相的地质和地球物理特征
4 研究结果
4.1 生物礁滩体生长发育特征
生物礁滩体独特的古地貌、结构、构造以及岩石学特征决定了来自生物礁滩体的多种地震反射参数,如振幅、能量、频率、连续性等都会与围岩不同,使得生物礁滩体的地震反射结构特征具有一定的特殊性。
通过穿越YB27井的地震剖面可以看出:礁滩体主要发育于长兴组上部层序SQP
2
ch
2
内,长兴组的下伏地层(吴家坪组顶界面)表现为强振幅反射,为碳酸盐台地反射,其为生物礁滩体的发育提供了稳定的基底;生物礁滩体呈明显的丘状,顶部显示出强振幅反射特征;生物礁滩体的两翼可见明显的上超现象;生物礁滩体形态不对称,生物礁滩体向海的一侧坡度陡,而向陆一侧,生物礁滩体坡度较缓。SQP
2
ch
2
生物礁滩体内部可以划分成5个高频旋回,反映了生物礁滩体经历了5期生长过程,其中前两期表现为向台地退积,后三期为生物礁滩体的主体发育期,表现为向海进积(图7)。
通过一系列横切过YB27井一支北西向的地震剖面分析可见,SQP
2
c h
2
内生物礁滩体的发育同样具有早期向台地退积后期向海进积的特征(图8)。而从横切过Y B204井—YB2井的地震剖面也可看出SQP
2
ch
2
内的生物礁滩体发育具有多期旋回,早期向台地退积,后期向海进积(图9)。
通过北西向顺台缘方向过生物礁滩体的地震剖面可以看出,研究区的生物礁滩体发育表现出不断向西北方向迁移的特征,其中过Y B27井的一支北西向的生物礁滩体可识别出6期不断迁移的生物礁滩体(图10),而过YB204—YB2井一支北西向的生物礁滩体则可识别出4期不断向西北方向迁移的生物礁滩体(图10)。
图7 元坝地区长兴组生物礁滩体地震特征和等时地层分析图
TWT=双向旅行时间,位置显示在图4中
4.2 生物礁滩体平面展布特征
沉积微相平面刻画是有效储层预测的基础,但是由于生物礁滩体期次多,相变快,钻孔少,因此在平面上对生物礁滩体的微相进行精细刻画具有很大难度。基于此,不同学者针对生物礁滩体的特征进行了各种尝试,其中包括属性提取、分频处理、小波变换、多形分析等手段,以期能够准确地刻画出生物礁滩体各微相的平面展布特征。
本研究中,通过多种技术手段对比认为,地震均方根振幅属性对各沉积微相的空间构成有较好的响应性,因此,在经过优选之后,将均方根振幅属性提取和分析技术作为刻画生物礁滩体微相空间展布的主要手段。
在属性分析基础上,结合钻孔定位、地质分析,对生物礁滩体空间展布进行了综合刻画,认为长兴组台缘带生物礁滩体空间分布具有明显差异性。在元坝地区,由西部向东和东北方向依次发育开阔台地、台缘礁滩体以及台缘斜坡,并可体现出台缘生物礁滩体内部沉积微相精细构成特点。生物礁滩体总体呈指状向西北方向延伸,礁核、礁前滩以及礁后滩明显,如YB27井所处的礁核部位;区内生屑滩发育,主要位于生物礁的周围,且总体表现出迎浪面窄背浪面宽的特点。滩间以滩间海沉积为主,开阔台地内广泛发育台内生屑滩(图11)。
图8 横切过YB27井一支北西向的生物礁滩体地震剖面分析图
4.3 沉积模式
通过对点(井)、线(地震剖面)、面(地震属性)、体(古地貌)的分析,笔者提出了元坝地区长兴组台缘礁滩体的发育模式(图12)。长兴组沉积时期,元坝地区整体发育了一复杂镶边型的台缘礁滩体,生物礁滩体的发育总体呈北西向条带状展布,具有向西北方向迁移的特征,该特征是在季风、洋流的共同作用下形成的;而在垂直于台缘方向上,由于海平面的变换导致生物礁滩体内部发育了多期叠置的高频旋回,其中早期向台地退积,晚期向海进积。
5 讨论
对于川东北以及元坝地区生物礁滩体,马永生、郭彤楼和付孝悦等(2002),马永生、牟传龙和郭彤楼等(2005),马永生、牟传龙和郭旭升等(2006),Ma YS、Zhang SC and Guo TL et al.(2008),段金宝、黄仁春和程胜辉等(2008),蔡希源(2011)等均对其沉积特征、演化过程进行了详细的研究,但是均未对长兴组生物礁滩体的内部生长、发育以及控制因素进行研究。
图9 横切过YB204—YB2井呈北西向展布的生物礁滩体地震剖面分析图
图10 元坝地区西北向过YB27井一支生物礁滩体的地震剖面解释图(a),元坝地区西北向过YB204—YB2井一支生物礁滩体的地震剖面解释图(b)
该剖面为瞬时相位剖面,TWT=双程旅行时间,位置显示于图4B
图11 地震均方根振幅对台缘生物礁滩体各微相的显示图
基于元坝地区长兴组生物礁滩体地质-地球物理响应模板可知,黄色区域主要代表生物礁滩体的礁核主体部位,红色区域代表生物礁的礁前和礁后滩发育区,绿色部分反映生物礁的边缘部分,主要是礁前和礁后滩的边缘薄层部位,蓝色略带绿色区域为滩间海沉积,纯蓝色区域则主要为台缘斜坡部位,斜坡内部的蓝绿色部位可能为礁前滑塌
图12 元坝地区长兴组复杂镶边型台缘礁滩体形成模式图
5.1 海平面变化对生物礁滩体生长的影响作用
不同周期的海平面变化是控制碳酸盐沉积的主要控制因素(Christopher G、Kendall SC and Schlager W,1981 ;Sarg JF,1988 ;Handford CR and Loucks RG,1993)。短周期海平面变化的记录常保存于台地顶部和盆地区域的沉积旋回中(Droxler AW、Schlager W and Jourdan A,1983;Loucks RG and Sullivan PA,1987),而长周期的海平面变化通常通过地震波识别出的沉积层序反映出来(Sarg JF,1988;Handford CR and Loucks RG,1993)。
前人的研究已经证明研究区生物礁滩体的形成总体是在海侵环境下形成的,即长周期的海平面变化是相对上升的(牟传龙、谭钦银和余谦等,2004)。但是在研究区,对于短周期海平面变化对生物礁滩体形成的影响至今未有研究,而在本次研究中,通过对单个生物礁滩体内部结构进行精细解剖发现:研究区长兴组生物礁滩体的形成具有5个高频旋回(图5),其对应了5期短周期的海平面,其中早期的2期退积生物礁滩体生长对应于2期短周期的海平面上升过程,晚期的3期进积生物礁滩体生长对应了3期短周期的海平面下降过程。
5.2 季风、洋流对生物礁滩体生长的影响
虽然通过海平面的变化可以解释生物礁滩体内部生物礁滩高频周期内的生物礁滩生长叠置关系,但是在本次研究中,元坝地区长兴组生物礁滩体在平面上为一复杂镶边型生物礁滩体(图4b,图5,图11),其特殊的展布特征明显不能用海平面的变化来进行解释。
季风的变化不但在很大程度上影响着搬运到盆地区域的沉积物数量,同时也影响台地内沉积物的进积方向(Hine AC and Neumann AC,1977 ;Steven LB、Randal D and Kissling DM et al.,2004)。在单信风的影响下,沉积物会沿着背风方向伸展,而迎风的一面岸外搬运量很小。上二叠统长兴组沉积时期,川东北地区为特提斯海的一部分,Parrish JT and Doyle JA(1984)、Parrish JT(1993)、Ziegler AM、Hulver ML and Rowley DB(1997)、Mutti MM(1995)、颜佳新、刘本培和张海清(1999)、颜佳新和赵坤(2002)通过研究发现,晚二叠世该地区存在来自东南向的季风,在该季风的影响下在元坝所处的川东北地区发育一支从南部过来沿顺时针方向的洋流(图12)。而通过前面研究发现,研究区内长兴组沉积时期,生物礁滩体向海一侧明显较向台地一侧陡,Stenven LB、Randal D and Kissling DM et al.(2004)研究认为,导致生物礁滩体不对称结构形成的主要原因是生物礁滩体向海一侧受风浪或洋流影响所致。元坝地区生物礁滩体总体为向北西方向进积,因此,可以大致判定导致其向北西方向迁移的主要因素为洋流和季风共同作用所致(图12)。
5.3 潮汐作用对生物礁滩体发育的影响
目前对于潮汐对生物礁滩体生长的影响的研究甚少,但是潮汐对于生物礁滩体生长具有影响作用是毋庸置疑的。在本次研究中通过长兴组生物礁滩体三维古地貌图(图4b)和元坝地区长兴组沉积相展布图(图5)可以发现,在靠近台缘斜坡的一支北西向的生物礁滩体中存在一系列垂直于生物礁滩体的沟槽,其很有可能为受潮汐作用影响而形成的潮道。同时在研究中发现,在川东北地区长兴组沉积时期确实存在证据证明潮汐水道存在。其中岩心和镜下观察发现:宏观上可在岩心上见到潮汐层理构造(图13a),镜下可见生物碎屑颗粒的长轴具有定向性,而且其具有一定的分选和磨圆度(图13b),这说明其明显受到潮汐的作用。
图13 潮汐水道存在证据,a为Pg2井岩心,发育潮汐层理构造,该井为元坝邻区普光气田的井;b为YB27井镜下照片,碎屑颗粒的长轴具有定向性,具有一定分选磨圆性
6 结论
本章在前人研究的基础上,结合地震、岩心、地震属性等资料对川东北元坝地区长兴组台缘礁滩体生长发育及其受控因素进行了研究,主要取得了如下结论:
1)通过地震剖面精细解剖确定了垂直于台缘方向(北东方向),生物礁滩体的生长具有早期向台地退积、晚期向海进积的多期叠置特征;顺台缘方向(北西方向)长兴组生物礁滩体的生长具有不断向北西向迁移的特征。
2)提出了元坝地区长兴组台缘礁滩体的发育模式。
3)通过分析发现,短旋回的海平面变化控制了生物礁滩体内部相互叠置的高频生长单元;季风及洋流控制了元坝地区长兴组生物礁滩体的北西向迁移;潮汐对长兴组生物礁滩体的形成也具有一定影响,其作用导致了一系列垂直于礁滩体的潮汐水道的发育。
参考文献
蔡希源.2011.川东北元坝地区长兴组大型生物礁滩体岩性气藏储层精细刻画技术及勘探实效分析.中国工程科学,13(10):28~33
程锦翔,谭钦银,郭彤楼,邓萍,王瑞华,王正和.2010.川东北元坝地区长兴组—飞仙关组碳酸盐台地边缘沉积特征及演化.沉积与特提斯地质,30(4):29~38
陈宗清.2008.四川盆地长兴组生物礁气藏及天然气勘探.石油勘探与开发,35(2):148~156,163
段金宝,黄仁春,程胜辉,曾韬,朱祥.2008.川东北元坝地区长兴期飞仙关期碳酸盐台地沉积体系及演化.成都理工大学学报(自然科学版),35(6):663~668
郭彤楼.2011.川东北元坝地区长兴组—飞仙关组台地边缘层序地层及其对储层的控制.石油学报,32(3):387~395
焦养泉,荣辉,王瑞,吴立群,颜佳新,曾凡平,顾元,李荣.2011.塔里木盆地西部一间房露头区奥陶系台缘储层沉积体系分析.岩石学报,27(01):285~296
马永生,牟传龙,郭旭升,谭钦银,余谦.2006.四川盆地东北部长兴期沉积特征与沉积格局.地质论评,52(1):25~29
马永生,郭彤楼,付孝悦,肖朝晖.2002.中国南方海相石油地质特征及勘探潜力.海相油气地质,7(3):19~27
马永生,牟传龙,郭彤楼,谭钦银,余谦.2005.四川盆地东北部长兴组层序地层与储层分布.地学前缘,12(3):179~185
牟传龙,谭钦银,余谦,王立全,王瑞华.2004.川东北地区上二叠统长兴组生物礁组成及成礁模式.沉积与特提斯地质,24(3):65~71
颜佳新,刘本培,张海清.1999.滇西昌宁—孟连带内石炭纪—二叠纪鲡粒灰岩的古地理意义.古地理学报,1(3):13~18
颜佳新,赵坤.2002.二叠—三叠纪东特提斯地区古地理、古气候和古海洋演化与地球表层多圈层事件藕合.地球科学,32(9):751~759
王国茹,郭彤楼,付孝悦.2011.川东北元坝地区长兴组台缘礁滩体系内幕构成及时空配置.油气地质与采收率,18(4):40~45
Christopher G,Kendall SC,Schlager W.1981.Carbonates and relative changes in sea level.Marine Geology.44:181~212
Droxler AW,Schlager W,Jourdan A.1983.Quaternary carbonate cycles in the western North Atlantic and their correlation with aragonite cycles in the Bahamas.Geological Society of America,15,562
Eberli GP,Ginsburg RN.1989.Cenozoic progradation of northwestern Great Bahama Bank,a record of lateral platform growth and sea-level fluctuations.Society of Economic Paleontologists and Mineralogists,44:339~351
Eberli GP.2001.Sea-level controlled architecture of Neogene carbonate sequences along the Bahamas Transect.Geological Society of America,33:99
Handford CR,Loucks RG.1993.Carbonate depositional sequences and systems tracts; responses of carbonate platforms to relative sea-level changes.AAPG Memoir,57:3~41
Hao F,Guo TL,Du CG,Zou HY,Cai XY,Zhu YM,Li PP,Wang CW,Zhang YC.2009.Accumulation Mechanisms and Evolution History of the Giant Puguang Gas Field,Sichuan Basin,China.Acta Geologica Sinica,83:136~145
Hine AC,Neumann AC.1977.Shallow carbonate-bank-margin growth and structure,Little Bahama Bank,Bahamas.AAPG Bulletin,61:376~406
Isozaki Y,Yao JX,Ji ZS,Saitoh M,Kobayashi N,Sakai H.2008.Rapid sea-level change in the Late Guadalupian(Permian)on the Tethyan side of South China:litho-and biostratigraphy of the Chaotian section in Sichuan.Proc.Jpn.Acad.84:344~353
Long SX,Huang RC,Li HT,You YC,Liu GP,Bai ZR.2011.Formation Mechainism of the Changxing Formation Gas Reservoir in the Yuanba Gas Field,Sichuan Basin,China.Acta Geologica Sinica(English Edition),81:233~242
Loucks RG,Sullivan PA.1987.Microrhombic calcite diagenesis and associated microporosity in deeply buried Lower Cretaceous limestones(abs.).in SEPM Annual Midyear Meeting Abstracts:Society of Economic Paleontologists and Mineralogists,V.4
Ma YS,Guo XS,Guo TL,Huang R,Cai XY,Li GX.2007.The Puguang gas field:New giant discovery in the mature Sichuan Basin,southwest China.AAPG Bulletin,91:627~643
Ma YS,Mou CL,Tan QY,Yu Q,Wang RH.2007.Reef-Bank Features and Their Constraint to Reservoirs of Natural Gas,from Permian Changxing Formation to Triassic Feixianguan Formation in Daxian-Xuanhan Area of Sichuan Province,South China.Earth Science Frontiers,14:182~192
Ma YS,Zhang SC,Guo TL,Zhu GY,Cai XY,Li MW.2008.Petroleum geology of the Puguang sour gas field in the Sichuan Basin,SW China.Marine and Petroleum Geology,25:357~370
Mutti MW.1995.Triassic monsoonal climate and its signature in Ladinian-Carnian carbonate platforms(Southern Alps,Italy).Journal of Sedimentary Research,65:357~367
Parrish JT,Doyle JA.1984.Predicted evolution of globel climate in late eolian-cretaceous time.International Organization of Paleobotany Conference,Abstracts
Parrish JT.1993.Climate of the supercontinent Pangea.Journal of Geology,101:215~233
Goldhammer RK,Dunn PA,Hardie LA.1987.High frequency glacio-eustatic sea level oscillations with Milankovitch characteristics recorded in Middle Triassic platform carbonates in northern Italy.American Journal of Science,287:853~892
Sarg JF.1988.Carbonate sequence stratigraphy and controls on carbonate platform development; case study from Permian of West Texas-New Mexico.AAPG Bulletin,72,1522
Steven LB,Randal D,Kissling DM,Setya PR,Paul AD,Bruce AM.2004.Seismic Stratigraphic Evolution of the MiocenePliocene Segitiga Platform,East Natuna Sea,Indonesia:the Origin,Growth,and Demise of an Isolated Carbonate Platform.In:Eberli GP,Masaferro JL,Sarg JF,eds.Seismic imaging of carbonate reservoirs and systems:AAPG Memoir,81:309~328
Wang BJ,Bao C,Lou Z,Guo Z.1989.Formation and development of the Sichuan Basin.In:Zhu X(ed.),Chinese Sedimentary Basin.Elsevier,Amsterdam,147~164
Wu LQ,Jiao YQ,Rong H,Wang R,Li R.2012.Reef Types and Sedimentation Characteristics of Changxing Formation in ManyueHonghua Section of Kaixian,Northeastern Sichuan Basin.Journal of Earth Science,23(4):490~505
Zhao WZ,Xu CC,Wang TS,Wang HJ,Wang ZC,Bian CS,Li X.2011.Comparative study of gas accumulations in the Permian Changxing reefs and Triassic Feixianguan oolitic reservoirs between Longgang and Luojiazhai-Puguang in the Sichuan Basin.Chinese Science Bulletin,56:3310~3320
Ziegler AM,Hulver ML,Rowley DB.1997.Permian world topography and climate.In:Martini IP(ed.).Late Glacial and Post-Glacial Environmental Changes-Quaternary,Carboniferous-Permian and Proterozoic.Oxford:Oxford University Press,111~146
今天的内容先分享到这里了,读完本文《地震属性裂缝预测技术》之后,是否是您想找的答案呢?想要了解更多,敬请关注www.zuqiumeng.cn,您的关注是给小编最大的鼓励。
本文来自网络,不代表本站立场,转载请注明出处:https://www.zuqiumeng.cn/wenda/365731.html