导读RNA甲基化专题 | 癌症研究篇答m6A RNA甲基化是最常见、最丰富的真核生物mRNA转录后修饰。研究表明,m6A 在不同组织,细胞系中是一个复杂的调控网路,m6A RNA 甲基化参与 RNA 的代谢过程,...

今天运困体育就给我们广大朋友来聊聊江西甲基化m6a价格,希望能帮助到您找到想要的答案。

RNA甲基化专题 | 癌症研究篇

RNA甲基化专题 | 癌症研究篇

m6A RNA甲基化是最常见、最丰富的真核生物mRNA转录后修饰。研究表明,m6A 在不同组织,细胞系中是一个复杂的调控网路,m6A RNA 甲基化参与 RNA 的代谢过程,并与肿瘤的发生和发展密切相关。本期着重解读两篇癌症中的 m6A 研究,看一下 m6A RNA 甲基化如何玩转高分期刊。

2020年10月,南京医科大学汪秀星课题组和美国 UCSD Jeremy Rich 等课题组在Cancer Discovery上发表题为“The RNA m6A reader YTHDF2  maintains oncogene expression and is a targetable dependency in glioblastoma stem cells”的研究论文。该研究为靶向治疗胶质母细胞瘤提供了新的治疗机会。

研究背景

胶质母细胞瘤(GBM)代表了最常见的原发性,内在性脑肿瘤,患者的平均生存期限制在一年。鉴于胶质母细胞瘤干细胞(GSC)在治疗抗性,血管生成,免疫逃逸和侵袭中的作用,临床和临床前观察表明,靶向GSC可以改善肿瘤预后神经肿瘤学上的精准医学研究。

研究方法

研究结果

1. 在 GSC 中上调的致癌转录本以 RNA m6A 修饰为标志

作者利用 MeRIP-seq 对 GSC 和神经干细胞(NSC)进行 m6A 标记的检测,结果发现,与非肿瘤对应物相比,GSCs 的m6A 分布发生了改变。通过38个 GSCs 和5个 NSCs 的队列中的 RNA-seq 数据进行 GSEA 分析,具有 m6A 峰的基因在GSC 高度富集,而且在 GSC 中获得的具有 m6A 峰的基因均被上调。相反,相对于 NSC、GSC 中丢失 m6A 峰的基因通常在 GSC 中被下调。而且,在 GSC 中,与癌症干细胞相关的重要基因上获得了 m6A 峰,包括表达增加的 OLIG2  和 MYC 。

2.  YTHDF2  在 GSC 中表达上调,对 GSC 的维持至关重要

作者为研究 m6A YTHDF  在胶质母细胞瘤中的功能作用,利用 CRIPR 技术检测了 YTHDF2 ,相对于对照 sgRNA,敲除 YTHDF2  会降低细胞活力及减少 GSCs 中细胞球形成。为研究了 YTHDF2  耗竭是否会诱导 GSC 分化,正交实验发现,shRNA 介导的 YTHDF2  敲低会降低 GSC 的活性,过表达的 YTHDF2  可以挽救 GSC 的活性。结果表明, YTHDF2  是胶质母细胞瘤维持的一个特异性和有效的调节因子。

3.  YTHDF2  通过 m6A RNA 修饰支持 GSCs 中的基因表达

作者利用 RNA-seq 检测 YTHDF2  的下游靶点,敲除 YTHDF2  可引起 GSCs 中广泛基因表达的改变, MYC  靶点显著富集,而且,GSCs 中获得 m6A 峰的基因更频繁地下调。通过 qPCR 也验证了 YTHDF2  敲除对 MYC、VEGFA  mRNA 水平降低的作用。为了预测 YTHDF2  在 GSCs 中的作用,作者结合 TCGA 胶质母细胞瘤基因表达数据,发现 YTHDF2  相关基因 MYC  和 E2F  靶点以及 G2M  调节因子和氧化磷酸化介质高度富集。这些数据表明 YTHDF2  作为与 m6A 差异修饰相关的转录程序的调节因子。

4.  YTHDF2  通过保持  MYC  转录稳定发挥 GSC 特异性依赖作用

为了确定 YTHDF2  介导作用于 GSCs 中 MYC 的特异性,作者比较了在 NSCs 和 GSCs 之间 YTHDF2  缺失的影响。NSCs 中 YTHDF2  敲低并不影响 MYC mRNA 水平,但降低了 GSCs 中 MYC mRNA 水平。而且, YTHDF2  耗竭降低了GSC 的活性,而不影响 NSCs。因此, YTHDF2  代表了一种 GSC 特异性依赖,通过 MYC  基因的特异性稳定支持胶质母细胞瘤的生存。

5.  IGFBP3  是 GSCs 中  YTHDF2-MYC  轴的下游靶点

因为 IGFBP3  是 YTHDF2  耗尽后最高下调基因之一,作者研究了 IGFBP3  是否调控 YTHDF2-MYC  轴下游的细胞活力。 IGFBP3  的缺失降低了 GSC 的活性和细胞球形成。 IGFBP3  过表达挽救了 GSCs 免于 YTHDF2  下调介导的细胞死亡。最后,作者利用20个胶质母细胞瘤和20个非肿瘤脑组织中 IGFBP3  的表达进行验证,观察到 GSC 中 IGFBP3  mRNA 表达升高。结果表明, IGFBP3  是 GSCs 中 YTHDF2-MYC  信号轴的关键下游效应子。

6.  YTHDF2-MYC-IGFBP3  轴促进体内肿瘤生长

为了探讨在体内靶向 YTHDF2  治疗的潜在益处,作者利用 CRISPR 敲除技术对原位异种移植物的小鼠进行检测。结果表明,与携带对照 sgRNA 的 GSCs 的小鼠相比,敲除 YTHDF2  延长了肿瘤潜伏期并减少了肿瘤体积。 IGFBP3 过 表达恢复了 YTHDF2  缺失的 GSCs 体内成瘤能力。

研究结论

通过结合体外和体内的 GSCs 研究,该研究阐明了 m6A 介质在 GSCs 中的功能,并确定 YTHDF2  是 GSCs 特异性依赖,通过稳定 MYC  转录物调控 GSCs 中的葡萄糖代谢。这些发现为靶向治疗胶质母细胞瘤提供了新的治疗机会。

2020年4月,上海交通大学医学院附属仁济医院洪洁团队在 Molecular Cancer 上发表了题为“m6A-dependent glycolysis enhances colorectal cancer progression”的研究论文。研究表明,靶向 METTL3  及其通路为高糖代谢的 CRC 患者提供了另一种合理的治疗靶点。

研究背景

结直肠癌 (CRC) 是全球第四大常见恶性肿瘤和第三大癌症死亡原因,而以乳酸作为糖酵解的最终产物,被认为是治疗癌症的一种有前途的方法。m6A 调控基因的改变在多种人类疾病的发病机制中起着重要的作用,但 m6A 修饰是否在 CRC 的葡萄糖代谢中起作用尚不清楚。

研究方法

研究结果

1.  METTL3 与结直肠癌糖酵解密切相关

为了探讨结直肠癌(CRC)中 m6A 修饰与糖酵解代谢之间的相关性,作者对47例 CRC 患者进行 RT-PCR分析,CRC患者中FDG 摄取与 METTL3  表达之间存在最显着的相关性。进一步分析发现 CRC 患者中 FDG 摄取与 METTL3  免疫组化染色存在显著相关性。最后,作者利用 RNA-seq 比较 METTL 3 敲除和野生型(WT) HCT116 CRC 细胞的基因表达谱, METTL3 敲除细胞表现出更高的 METTL3 表达。这些结果表明 METTL3  可能介导 CRC 患者糖溶解代谢和癌变。

2. METTL3  在结直肠癌中促进糖酵解代谢

为了弄清 METTL3  的改变是否直接影响糖酵解代谢,研究发现敲除 METTL3  可显著降低 HCT116 和 SW480 细胞的胞外酸化速率(ECAR)水平,过表达 METTL3 显著提高了 DLD1 细胞的乳酸生成、葡萄糖吸收和 ECAR  水平。为了阐明 Mettl3  诱导的 CRC 糖酵解是否依赖于其甲基转移酶功能,作者通过 Mettl3  野生型和突变型的研究,发现 Mettl3  的 MTase 结构域的缺失阻断了 Mettl3  诱导的糖酵解过程。这些数据表明 Mettl3 通过其甲基转移酶结构域调控结直肠癌糖酵解代谢。

3. 在结直肠癌中, METLC3  诱导的增殖依赖于糖酵解的激活

METLC3  的敲除消除了 HCT116 细胞的细胞增殖和集落形成,并且降低了 HCT116 肿瘤的生长和异种移植小鼠模型中的肿瘤重量。在功能分析中, METTL3  的过表达增加细胞增殖、集落形成、肿瘤的生长和肿瘤的重量。2-DG(糖酵解途径的抑制剂)处理在体外和体内显着阻断了 METTL3  诱导的细胞增殖和菌落形成,这些结果表明 Mettl3 通过调控结直肠癌糖代谢促进 CRC 进展。

4. METTL3  在结直肠癌中的潜在靶点

为了鉴定 METTL 3 的潜在靶标,作者选择了 METTL3  敲除和 WT HCT116 细胞进行 MeRIP-seq和RNA-seq,最常见的motif ' GGAC '在 m6a 峰中显著富集,大部 分 METTL3  结合位点位于 CDS区,在 5'UTR 和 3'UTR 高度富集,并且 m6A在转录水平上发生了全局低甲基化。联合RNA-seq数据,确定了429个低甲基化的 m6A 基因,其 mRNA 转录被下调,595个低甲基化的 m6A 基因,其 mRNA 转录被上调。基于甲基化水平与 mRNA 表达水平都下降,找到与糖酵解密切相关的靶基因 HK2  和 SLC2A1(GLUT1) 。

6.  HK2  和  SLC2A1  是  METTL3  在 CRC 中重要的功能靶基因

作者通过 HCT116 WT 和 mettl3  敲除细胞转染 control、 HK2  或 SLC2A1  过表达实验发现, HK2  或 SLC2A1  的异位表达部分恢复了敲除 mettl3  细胞的增殖、集落形成能力和肿瘤生长,而且,也能恢复 HCT116 mettl3  敲除细胞中乳酸产量的下降。同时,在体外和体内,过表达 SLC2A1  显著恢复了 HCT116 mettl3  敲除细胞葡萄糖摄取下降的趋势。因此, HK2  和 SLC2A1 介导了 CRC 细胞中 METLL3 的调节功能。

研究结论

METTL3  是 CRC 的一种功能性和临床致癌基因。 METTL3  通过 m6A- IGF2BP2/3— 依赖机制稳定 CRC 中 HK2  和 SLC2A1 的表达。靶向 METTL3  及其通路为高糖代谢的 CRC 患者提供了另一种合理的治疗靶点。

参考文献

[1] Dixit D, Prager B, GimpleShen R, et al. The RNA m6A reader YTHDF2  maintains oncogene expression and is a targetable dependency in glioblastoma stem cells[J]. Cancer Discovery, 2020.

[2] Shen C, Xuan B, Yan T, et al. M6A-dependent glycolysis enhances colorectal cancer progression[J]. Molecular Cancer, 2020, 19(1).

m6A的前世今生

近年来,m6A RNA修饰的研究已成为当今生命科学领域最前沿最热门的研究方向之一,不断有CNS的文章问世,国自然资助的项目数量也逐年上升。

m6A是什么,m6A调控因子、m6A检测方法有哪些,m6A在人类疾病中扮演哪些作用。本文将做一简明阐述。

N6-methyladenosine也叫m6A,是一种广泛存在于mRNA上的碱基修饰行为,mRNA的内部修饰则用于维持mRNA的稳定性。

mRNA最常见的内部修饰包括了N6-腺苷酸甲基化(m6A)、N1-腺苷酸甲基化(m1A)、胞嘧啶羟基化(m5C)等。N6-甲基腺嘌呤(m6A)在 mRNA 内部修饰碱基中所占比例最大,主要分布在 G(m6A)C (70%)或者A(m6A)C (30%)保守序列中。

早在20世纪70年代,Desrosiers. R等在人哺乳动物细胞的 mRNA 中发现了m6A的存在,但m6A的功能以及作用机制却一直鲜有研究。

直到 2011 年,芝加哥大学何川教授团队在 *Nat Chem Biol *发表文章“N6-methyladenosine in nuclear RNA is a major substrate of the obesity-associated FTO”,揭示m6A的可逆化修饰,使 m6A 的研究重新热门起来。

<figcaption style="margin-top: calc(0.666667em); padding: 0px 1em; font-size: 0.9em; line-height: 1.5; text-align: center; color: rgb(153, 153, 153);">图1 RNA常见的碱基修饰行为</figcaption>

从图2中我们可以看到,这是一个已经发生甲基化的核糖核苷酸,确切地说叫N6-methyladenosine。

一共分为2个大的结构,左下角的是五碳糖,图2中a框部分也就是五碳糖的第二位C处的羟基发生脱氧就会变成脱氧核糖核苷酸(从RNA变成DNA)。图2中c框部分标注的,也就是第四位的C处通常会带有磷酸基。图2中b框部分通常就是我们所说的含氮碱基。

这里特指腺苷酸(A),当腺苷酸的第六位N处发生甲基化时,就是我们所说的m6A。

[图片上传失败.(image-52b088-1637633108142)]

<figcaption style="margin-top: calc(0.666667em); padding: 0px 1em; font-size: 0.9em; line-height: 1.5; text-align: center; color: rgb(153, 153, 153);">图2 N6-甲基化腺苷酸结构示意图</figcaption>

m6A这种甲基化修饰是可逆化的,调控因子包括甲基化转移酶、去甲基化酶和甲基化阅读蛋白等。

甲基化转移酶包括METTL3/14、WTAP和KIAA1429等,主要作用是催化mRNA上腺苷酸发生m6A修饰。

而去甲基化酶包括FTO和ALKHB5等,作用是对已发生m6A修饰的碱基进行去甲基化修饰。阅读蛋白主要功能是识别发生m6A修饰的碱基,从而激活下游的调控通路如RNA降解、miRNA加工等。

<figcaption style="margin-top: calc(0.666667em); padding: 0px 1em; font-size: 0.9em; line-height: 1.5; text-align: center; color: rgb(153, 153, 153);">图3 参与m6A的酶类</figcaption>

<figcaption style="margin-top: calc(0.666667em); padding: 0px 1em; font-size: 0.9em; line-height: 1.5; text-align: center; color: rgb(153, 153, 153);">图4 m6A调控</figcaption>

甲基化转移酶(methyltransferase)也称为Writers,能够让mRNA上的碱基发生m6A甲基化修饰。METTL3、METTL14、WTAP和KIAA1492都属于m6A甲基化转移酶的核心蛋白。这些蛋白会形成复合物(complex),共同行使催化功能。

<figcaption style="margin-top: calc(0.666667em); padding: 0px 1em; font-size: 0.9em; line-height: 1.5; text-align: center; color: rgb(153, 153, 153);">图5 METTL3、METTL14及其复合物结构</figcaption>

m6A去甲基化酶主要包括FTO和ALKBH5等。FTO蛋白全称Fat mass and obesity-associated protein,属于Alkb蛋白家族中的一员并且与肥胖相关。

2011年,芝加哥大学何川教授团队首次证实, FTO蛋白是一种重要的去甲基化酶。ALKBH5是另一种重要的去甲基化酶,对细胞核中的mRNA进行去甲基化修饰。在细胞系中敲低ALKBH5后,mRNA上m6A修饰水平显著上升。

发生m6A修饰的mRNA想要行使特定的生物学功能,需要甲基化阅读蛋白,也称为reader。阅读蛋白主要包括YTH结构域的蛋白、核不均一核糖蛋白(hnRNP)以及真核起始因子(eIF)等。这些阅读蛋白的功能主要包括特异性结合m6A甲基化区域,削弱与RNA结合蛋白同源结合以及改变RNA二级结构从而改变蛋白与RNA的互作。

目前检测m6A所用的技术手段包括高通量测序、比色法以及液相色谱质谱联用(LC-MS),常用的方法主要包括MeRIP-seq、miCLIP-seq、LC-MS/MS以及比色法。 其中LC-MS/MS和比色法能够检测mRNA整体的m6A水平,而MeRIP-seq和miCLIP-seq属于高通量测序手段。

LC-MS/MS在液相质谱的基础上采用串联质谱,获得分子离子峰和碎片离子峰,对碱基同时进行定性和定量分析。

LC-MS/MS法第一步 使用TRIzol提取完总 RNA后,可以用oligodT磁珠或者rRNA去除试剂盒获得包括mRNA、lncRNA等在内的RNA。

第二步 使用核酸酶P1(Nuclease P1)将RNA消化成单个碱基。

第三步 加入碱性磷酸酶和碳酸氢铵后孵育数小时,将样本注射入液相色谱仪,计算各个碱基的含量。

第四步 进入质谱串联分析,单个核糖核苷酸会被打断成五碳糖和嘧啶或嘌呤。 最后 根据m6A和总腺嘌呤的比例就能算出m6A在mRNA上整体的甲基化程度。

LC-MS/MS为最早检测m6A的方法,操作较为繁琐。相对于LC-MS/MS较为繁琐的操作,比色法更为简便。研究人员既可以提取total RNA,也可以利用oligodT磁珠富集mRNA。

<figcaption style="margin-top: calc(0.666667em); padding: 0px 1em; font-size: 0.9em; line-height: 1.5; text-align: center; color: rgb(153, 153, 153);">图6 m6A检测方法 (A)LC-MS/MS法;(B)比色法。</figcaption>

2012年之前,全基因组或全转录组水平上鉴定m6A修饰的研究领域是一片空白。

2012年Meyer K. D发表于 Cell 上的论文“Comprehensive analysis of mRNA methylation reveals enrichment in 3' UTRs and near stop codons”和Dominissini D发表于 Nature 上的论文“Topology of the human and mouse m6A RNA methylomes revealed by m6A-seq”第一次从转录水平上,大范围、高通量地鉴定了人和小鼠m6A的甲基化水平。

这种方法被称为MeRIP-seq或m6A-seq。

MeRIP-seq操作 第一步先对mRNA进行片段化,接下来使用带有m6A抗体的免疫磁珠对发生m6A甲基化的mRNA片段进行富集,然后将富集到的mRNA片段纯化后构建高通量测序文库进行上机测序。另外需要单独构建一个普通的转录组文库作为对照。最后将2个测序文库放在一起进行生物信息学分析,得到m6A甲基化程度较高的区域(m6A peak)。

这种方法优点是方便快捷成本低廉,可以对发生高甲基化的mRNA区域进行一个定性分析。但是MeRIP-seq只能鉴定m6A高甲基化的区域,并不能做到单碱基的分辨率。

2015年,Bastian Linder等发表在 Nature Methods 的文章“Single-nucleotide-resolution mapping of m6A and m6Am throughout the transcriptome”,第一次从单碱基的水平测定m6A。

这种技术被称为miCLIP-seq。

miCLIP-seq操作第一步对富集完的mRNA进行片段化。

第二步,使用带有m6A抗体免疫磁珠与带有m6A的mRNA片段进行结合。

第三步,使用紫外交联进行免疫共沉淀后,在mRNA片段的3’端连上接头序列,在5’端加上P32放射性标记后进行移膜。

第四步,根据放射性标记进行切膜回收后,对mRNA片段进行反转录和纯化回收。

第五步,对反转录组的cDNA进行环化。

第六步,对环化的cDNA进行复线性化,然后构建测序文库上机测序。

<figcaption style="margin-top: calc(0.666667em); padding: 0px 1em; font-size: 0.9em; line-height: 1.5; text-align: center; color: rgb(153, 153, 153);">图7 高通量测序检测m6A (A)MeRIP-seq;(B)miCLIP-seq</figcaption>

1. 肿瘤

2020年3月发表于 Cancer Cell 上的综述性文章“m6A Modification in Coding and Non-coding RNAs: Roles and Therapeutic Implications in Cancer”,文章指出,m6A相关修饰酶在肿瘤中的变化不尽相同,环境改变和位点突变均可导致m6A状态的改变,同时m6A参与一些肿瘤靶向治疗基因的调控。

<figcaption style="margin-top: calc(0.666667em); padding: 0px 1em; font-size: 0.9em; line-height: 1.5; text-align: center; color: rgb(153, 153, 153);">图8 m6A相关修饰酶在肿瘤中的变化</figcaption>

2. 病毒感染

2020年2月发表于 Nature Microbiology 上的文章“N6-methyladenosine modification enables viral RNA to escape recognition by RNA sensor RIG-I”,文章指出,人类偏肺病毒(HMPV)在其RNA中获得m6A,可以模仿正常细胞的RNA,躲避免疫系统的检测。

<figcaption style="margin-top: calc(0.666667em); padding: 0px 1em; font-size: 0.9em; line-height: 1.5; text-align: center; color: rgb(153, 153, 153);">图9 病毒中m6A的作用</figcaption>

3. 神经脱髓鞘改变

2020年1月发表于 Neuron 上的文章“m6A mRNA Methylation Is Essential for Oligodendrocyte Maturation and CNS Myelination”,文章指出,m6A去甲基化酶METTL14的减少会导致少突胶质细胞的减少及中枢神经的脱髓鞘改变,提示m6A在神经细胞的发育中起着重要的调节作用。

<figcaption style="margin-top: calc(0.666667em); padding: 0px 1em; font-size: 0.9em; line-height: 1.5; text-align: center; color: rgb(153, 153, 153);">图10 m6A对神经系统发育的调控。</figcaption>

m6A的研究热点不断升级,今后会有更多的高分文章出现,关联的疾病也会越来越多。

但是,m6A的检测方法较为繁琐,所需费用也比较高,限制的m6A的研究进展以及临床应用,发展快速简便经济的检测方法是今后m6A检测技术的发展方向。

同时在研究层面,m6A作为十分重要的 RNA 表观遗传学修饰,如何与 DNA、组蛋白表观遗传学协同作用调控基因表达,也需要进一步深入探索。

参考文献

ALKBH5通过m6A-dependent表观遗传沉默pre-miR-181b-1/YAP信号轴抑制骨肉瘤的进展

前言

骨肉瘤是最常见的原发性骨实性恶性肿瘤之一,好发于青少年和年轻人。患者的标准治疗包括化疗和手术。随着各种先进治疗方法的发展,患者的存活率大大提高了。然而,目前还没有已知的预防方法。因此,深入了解其发生机制,开发新的骨肉瘤治疗药物迫在眉睫。

N6-methyladenosine (m6A) 是真核生物mRNA中最丰富的可逆甲基化修饰。近年来,许多研究集中在m6a修饰的mRNA的生物学功能上。m6A修饰被发现参与多种生物学过程,并在癌症进展中发挥重要作用。如,FTO在急性髓系白血病(AML)中起着致癌因子的作用。ALKBH5已被证明与胰腺癌、胶质母细胞瘤有关,并影响雄性小鼠的生育能力。然而,对于m6A修饰在人骨肉瘤中的功能和潜在机制仍有很大程度的未知。

研究结果

1. m6A去甲基化酶ALKBH5在人骨肉瘤中下调

作者首先采用m6A ELISA和免疫荧光(IF)法定量人骨肉瘤细胞系U2OS、Saos2、143B和人成骨细胞(hOB) hFOB1.19细胞系中m6A的含量。结果显示,骨肉瘤细胞中m6A含量显著升高。此外,与hOB细胞相比,所有三种骨肉瘤细胞系中去甲基化酶ALKBH5 mRNA与m6A含量呈负相关显著降低,但在METTL3、METTL14、WTAP和FTO中无此现象。同时,免疫染色证实,与hOB细胞相比,U2OS、Saos2、143B骨肉瘤细胞系中的ALKBH5显著降低。此外,在人骨肉瘤组织中检测到ALKBH5的蛋白表达低于正常骨组织。我们进一步应用免疫组化(IHC)检测含102个组织芯的骨肉瘤组织微阵列(TMAs)中ALKBH5蛋白的表达。与正常骨组织相比,在恶性骨肉瘤核心部位,特别是IVB期(最高程度的骨肉瘤)检测到ALKBH5蛋白表达显著降低。来自TCGA数据集的Kaplan-Meier生存分析显示ALKBH5高表达的患者存活率较高,而低ALKBH5表达的患者存活率较低。结果表明,在人骨肉瘤中ALKBH5普遍下调,可能介导m6A修饰,在人骨肉瘤中发挥重要作用。

2. ALKBH5-依赖的 m6A去甲基化严重影响骨肉瘤细胞的生长和运动

为了确定ALKBH5调控m6A修饰是否在骨肉瘤细胞中起作用,作者分别过表达、敲降ALKBH5的表达来验证其细胞功能。我们检测了ALKBH5对细胞增殖、迁移和侵袭的影响。与预期一致,过表达ALKBH5显著抑制U2OS细胞的增殖、侵袭和迁移能力,而抑制ALKBH5的表达则诱导相反的作用。此外,当ALKBH5过表达时,早期和晚期凋亡细胞百分比均显著增加,而ALKBH5敲低对细胞的凋亡影响甚微。细胞克隆实验也产生类似的结果。

3. 鉴定ALKBH5 / m6a - pre - miR - 181 - b - 1 / miR -181b-5p-YAP轴作为一种新的通路抑制骨肉瘤肿瘤的进展

(1)ALKBH5通过调控pre-miR-181b-1的表达水平抑制骨肉瘤细胞增殖

如上所示,作者已经证明了ALKBH5依赖的m6A rna去甲基化对骨肉瘤肿瘤抑制的重要性。接下来,进一步深入了解其具体的分子机制。MiRNA的加工过程也受到骨肉瘤的特异性调控。然而,尚无报道显示m6A修饰在骨肉瘤miRNA加工过程中的生物学功能。因此,作者使用m6A 芯片在对照和过表达ALKBH5的U2OS细胞中鉴定ALKBH5修饰的miRNAs前体。通过微阵列检测到773个pre- miRNA,鉴定出11个在ALKBH5过表达的细胞中,比对照细胞减少20%(>减少1.2倍)的pre- miRNA。值得注意的是,在pre- mirna中,pre-miR-181b-1再过表达ALKBH5后,甲基化显著降低。更重要的是,pre-miR-181b-1序列在不同物种间广泛保守。这些发现表明在骨肉瘤中pre-miR-181b-1是ALKBH5的一个潜在的作用靶点。进一步发现,premiR-181b-1在m6A-RIP中富集,而在IgG-IP中不富集。此外,pre-miR-181b-1和成熟miR-181b-5p在骨肉瘤细胞中明显低于hOB细胞。过表达ALKBH5可显著增加U2OS细胞中premiR-181b-1和miR-181b-5p的表达水平。相反,抑制ALKBH5产生相反的效果。正如作者所猜想,miR-181b-5p导致细胞迁移和细胞增殖的减少。miR-181b-5p下调(AMO-181b-5p)部分挽救了U2OS细胞中ALKBH5过表达导致的细胞迁移和增殖下降。

(2)YAP是人骨肉瘤细胞中miR-181-5p的关键靶基因

然后通过计算预测寻找miR-181-5p候选靶基因。通过这种方式,作者发现Yesassociated protein 1 (YAP)是miR-181-5p潜在的靶基因。有报道称YAP是一种致癌基因,在多种肿瘤发生发展中具有重要作用。接下来,作者证实了过表达的miR-181b-5p确实直接抑制了其靶基因YAP在骨肉瘤细胞中的表达,且发现过表达ALKBH5明显抑制了U2OS细胞中YAP的mRNA和蛋白水平,而抑制ALKBH5则使YAP的表达升高。同时,作者证实了YAP对骨肉瘤细胞生长的影响。siRNA沉默YAP显著抑制了U2OS细胞的增殖、侵袭、迁移和集落形成能力。

(3)YAP消除了ALKBH5对骨肉瘤细胞活力和小鼠异种肿瘤生长的抑制作用

为探究ALKBH5与YAP的相互关系,作者进一步分析了细胞生长的影响。与单独过表达ALKBH5相比,ALKBH5与YAP共表达组的细胞增殖明显增加。YAP还抵消了ALKBH5对U2OS细胞侵袭和迁移的抑制作用,YAP显著提高了活细胞百分率,减少了凋亡细胞,恢复了集落形成能力。并且,作者利用异种骨肉瘤小鼠模型评估了ALKBH5介导的m6A去甲基化的体内有效性。肿瘤体积和重量的降低,证明了ALKBH5过表达降低了骨肉瘤肿瘤的生长,而这一效果通过共转染过表达的YAP而抵消。

4)m6A读取蛋白YTHDF2正调节pre-miR-181b-1的稳定

因为ALKBH5介导的m6A去甲基化似乎增加了pre-miR-181b-1的表达,猜想pre-miR-181b-1是YTHDF2(促进m6A甲基化RNA降解的m6A读取蛋白)的一个靶点,与作者的猜想一致,再YTHDF2-IP组分中观察到pre-miR-181b-1的强烈富集。进一步,在U2OS细胞使用siYTHDF2敲降其表达后,pre-miR-181b-1和miR-181b-5p的表达均增加。此外,siYTHDF2可进一步增强ALKBH5过表达的抑瘤作用。数据表明ALKBH5介导的pre-miR-181b-1 m6A去甲基化在骨肉瘤中起关键作用。

4. 鉴定YAP mRNA作为ALKBH5在骨肉瘤中的直接靶点

(1)ALKBH5直接调控YAP的mRNA和蛋白稳定性

有趣的是,根据基于序列的m6A修饰位点预测网站( SRAMP),作者观察到YAP基因的mRNA携带9个潜在的m6A修饰位点。接下来作者验证了ALKBH5是否可以直接调控YAP的m6A甲基化和基因降解。采用基因特异性m6A-qPCR检测YAP的表达。过表达ALKBH5后,m6A- RIP组YAP mRNA中m6A丰度明显降低,IgG-RIP组未见明显变化。此外,与siNC组相比,siALKBH5在转录抑制剂actinomycin D (ActD)存在的情况下增强了U2OS细胞中YAP mRNA的稳定性。同时,siALKBH5在翻译抑制剂环己酰亚胺(CHX)的作用下抑制了YAP的降解。然而,过表达ALKBH5产生相反的作用,导致骨肉瘤细胞中YAP-mRNA稳定性显著下降,YAP蛋白降解增加。

(2)m6A-依赖的YAP的翻译增强与YTHDF1呈正相关

结果表明,ALKBH5介导的m6A去甲基化抑制了YAP的表达,我们推测甲基化的YAP转录本是YTHDF1(促进甲基化转录本翻译的m6A读取蛋白)的潜在靶点。与IgG-RIP组相比,YTHDF1组YAP mRNA中的丰度明显增加,说明YTHDF1能够识别YAP mRNA中的m6修饰位点。接下来,作者发现YTHDF1 siRNA (siYTHDF1)降低了YAP蛋白水平。且在ALKBH5过表达的U2OS细胞中,过表达YTHDF1导致YAP增加。此外,与预期一致,上调YTHDF1水平可部分恢复对U2OS细胞增殖、侵袭、迁移、凋亡和集落形成能力的抑制作用。

总结

总的来说,作者的结果首次表明ALKBH5是一种抗肿瘤或促凋亡因子,至少部分地通过直接m6A甲基化YAP及甲基化pre-miR-181b-1间接下调YAP水平的双机制抑制YAP的表达来发挥作用。同时,作者也证明了pre-miRNAs可以被ALKBH5甲基化调控其成熟加工的过程。

m6a甲基化名词解释

m6a甲基化名词解释:mRNA中,5'帽结构的甲基化很常见,腺苷的N6位置上(m6A)的甲基化也较为常见,tRNA是修饰最多的RNA,嘌呤上的甲基化很常见。

DNA甲基化是与基因表达的沉默相关的一种表观遗传修饰。Daniel Tenen及同事提出,活性转录直接调控DNA甲基化的水平。来自被研究很透彻的甲基化敏感基因CEBPA的一个非编码RNA与DNA甲基转移酶DNMT1相互作用,阻止在CEBPA位点上的甲基化,从而帮助CEBPA表达。

类型

甲基化包括DNA甲基化和蛋白质甲基化,DNA甲基化:脊椎动物的DNA甲基化一般发生在CpG位点(胞嘧啶-磷酸-鸟嘌呤位点,即DNA序列中胞嘧啶后紧连鸟嘌呤的位点)。经DNA甲基转移酶催化胞嘧啶转化为5-甲基胞嘧啶。人类基因中约80%-90%的CpG位点已被甲基化,但是在某些特定区域,如富含胞嘧啶和鸟嘌呤的CpG岛则未被甲基化。

一篇m6A综述阅读笔记

title: 文献笔记-Where, When, and How Context-Dependent Functions of RNA Methylation Writers, Readers, and Erasersinfection

date: 2019-11-22 12:00:00

type: "tags"

tags:

注:以前看综述的时候,我喜欢把原文逐字翻译为汉语,效率比较低,现在我就采用笔记的形式的来看综述,按照原文的结构,把关键点记录下来,再加上自己的理解即可。

Hailing Shi, Jiangbo Wei, Chuan He,Where, When, and How: Context-Dependent Functions of RNA Methylation Writers, Readers, and Erasers,Molecular Cell,Volume 74, Issue 4,2019,Pages 640-650,

ISSN 1097-2765, .

细胞RNA会天然地经历各种化学修饰。这些经化学修饰的核苷酸又赋予了其自身结构的多样性,从而在各种有序的代谢与机体的功能方面发挥着各种调控功能,进而影响了基因的表达。随着对回贴(mapping)位点修饰的全转录组测序方法的发展,对精确修饰进行检测和定量的高灵敏质谱方法的进步,以及参与修饰的“ 效应器 ”(effectors,包括各种能改变各种修饰位点的酶,例如 写入器 ( writers )和 擦除器 ( erasers )和能识别化学修饰位点的 读取器 ( readers ))理解的加深,最近几年有关RNA修饰的研究呈现暴发式地增长。然而由于RNA种类庞杂,表达水平有差异,因此这给RNA修饰的研究带来了很大的挑战,另外,RNA的修饰还与细胞类型,组织特异性,以及修饰 效应器 的定位有关,这又增加了研究难度。我们在这篇综述里,重点阐述了最近几年关于 -甲基化转换酶(m6A, )功能的研究进展,强调了环境(context)对RNA修饰调控和功能的重要性。

早期研究发现,m6A主要发生在(G/A)(m6A)C序列上。最近的研究发现,m6A主偏向于出现在终止密码子和3'UTR上,因此我们可以推断,m6A可以影响基因的表达。

m6A途径的效应器(effectors)包括 写入器 (writers), 擦除器 (erasers)和 读取器 (readers),其中 写入器 往核苷酸上添加上甲基, 擦除器 反之,即去掉核苷酸上的甲基, 读取器 则是能够识别那些核苷酸上含有甲基的序列,它们的成员如下图的Figure 1所示:

m6A是通过一个复合物加到mRNA上的(Figure1),这个复合物有多个亚基,包括METTL3,METTL14,WTAP,VIRMA,ZC3H13,HAKAI,RBM15/15B。其中包括以下成员:

METTL3在各类细胞中的分布不同,例如在HeLa细胞中,METTL3/METTL14会形成二聚体结构与WTAP产生相互作用,然后进入细胞核形成斑点(speckle)。METTL3和WTAP中含有NLS(nuclear localization signals),NLS的突变会导致复合物无法入核。METTL3还存在于一些细胞质中,例如在一些癌细胞系,包括HeLa,MDA-MB-231,MOLM13细胞系等。还有一些情况,例如在小鼠皮质神经元中,METTL14位于细胞质和细胞核。现在还不清楚为什么METTL3的定位为什么会出现如此差异。METTL3/METTL14的比例在不同的细胞系中也有差异,这可能会影响METTL3的定位。

写入器的招募导致了转录本上的m6A的特异性,这一招募过程可能是由TF或表观遗传标记介导的,如下下图的Figure 2所示:

当出现热休克时,METTL3就会定位到染色质的热休克相关的基因上,m6A就会被添加到热休克转录本上,从而诱导这些转录本在应激压力下被清除。UV诱导DNA破坏时,METTL3/14就会在2分钟内定位到UV诱导的损伤位点,同时伴随着m6A活动的增强。在人类多能干细胞的TGF- 信号转录通路转导方面,活化的SMAD2/3会与METTL3/14-WTAP相互作用,诱导m6A添加到特定的转录本上。在AML细胞中,一部分METTL3会通过METTL14非依赖方式与CCAAT增强子结合蛋白zeta(CEBPZ)的启动子区域结合。在HepG2细胞中,H3K36me3能通过与METTL14相互作用招募 写入器 ,诱导mRNA的CDS和3'UTR上添加m6A。

METTL3还能作为一个潜在的m6A读取器,在Figure 2B中,我们可以看到,在肺癌细胞中,METTL3此时并没有发挥催化作用,而是在细胞质中锚定到了3'UTR上,促进了一个报告mRNA的翻译。进一步的研究表明,METTL3是通过eIF3h相互作用来促进翻译的。

METTL3蛋白自身会通过PTM或与其它蛋白质相互作用来发挥调控功能,例如人类的METTL14能够诱导METTL3的丝氨酸399磷酸化。人类的METTL3会出现SUMOylation修饰,导致METTL3/14的活性降低。但这些现象的机制还不清楚。

METTL3/14复合物偏爱RRACH模序(R=A或G;H=A,C或U),METTL16则偏爱另外的序列与结构。METTL16被验证的两个特异性序列是U6(U6 small nuclear RNA, snRNA)和人类MAT2A(methionine adeno-syltransferase 2A)上的一个发夹结构(hp1),MAT2A编码S-腺苷甲硫氨酸合成酶(S-adeno-sylmethionine synthetase, SAM synthetase)。有实验分析发现,METTL16偏爱一个形成茎环结构膨大处的UAC(m6A)GAGAA序列。EMTTL16介导的MAT2A甲基化是SAM稳态的负反馈信号。最近发现了ZCCH4是一个新的m6A读取器。

m6A读取器通过作用于含有m6A的mRNA来发挥作用,Figure 1中可以把读取器分为三类。

第一类读取器含有YTH结构域(YTH的全是YT521-B homology),这些成员包括YTHDF1-3(YTH domain family 1-3),YTHDC1-2(YTH domain containing 1-2)(参考Figure 1)。细胞质中的YTHDF2会通过招募CCR4-NOT腺嘌呤酶复合物来诱导靶转录本的部分降解。细胞质中的YTHDF1和YTHDF3能促进HeLa细胞中靶转录本的翻译。细胞核中的YTHDC1有多个作用,包括招募某些剪接因子调控mRNA的剪接,促进mRNA的输出,加速某些转录本的降解。YTHDC2调控mRNA的稳定,翻译以及精子形成。

第二类读取器是HNRNPs,全称是heterogeneous nuclear ribonucleoproteins,成员包括HNRNPC,HNRNPG与HNRNPA2B1,它们能调控靶转录本的剪接,加工,它们能与RNA的某些结构结合,这些结构是由m6A介导形成的,因为m6A会重构局部的RNA结构,调控RNA-蛋白质之间的相互作用,这一现象称为m6A开关(m6A-switch)。

第三类读取器含有相同的RNA结合结构域(RBD, RNA binding domains),例如KH结构域(K homology),RNA识别模序(RNA recognition motif),以及RGG( arginine/glycine-rich)结构域,它们都能与含有m6A的mRNA结合,包括FMR1和IGF2BP1-3。FMR1(Fragile X mental retardation 1)含有3个KH结构域,1个RGG结构域,它有可能通过与YTHDF1和YTHDF2相互作用来影响RNA的转移,RNA的稳定。IGF2BP1-3(insulin-like growth factor 2 mRNA-binding proteins 1–3)能通过m6A的方式稳定靶转录本(YTHDF2与之相反,它是降解靶转录本)。IGF2BP蛋白功能的核心是KH3-4结构域,这是与m6A结合的关键区域。

Prrc2a是最近发现的一个读取器,它与髓鞘形成有关,具体机制不明。

以下为作者的几个猜测。

第一,读取器有可能与其它的RBP相互作用,从而被招募到mRNA的不同区域。IGF2BP1-3和YTHDF2通过在不同位点来调控mRNA的稳定性,例如IGF2BP1-3结合到3'UTR,而YTHDF2结合到CDS区。而RBP对RNA的识别取决于多个因素,例如结合位点的序列,序列的侧翼以及RNA的二级结构。因此RBP与读取器蛋白质的相互作用有可能涉及了m6A位点的特异性。

第二,m6A位点的密度和序列也可能与之有关。

第三,读取器蛋白会在细胞区室的特定位点富集,因此会偏向与局部一些RNA类型结合。例如,YTHDF1-3,FMR1和HNRNPA2B1位于细胞的应激颗粒核心地区。在乳腺癌细胞中,YTHDF1-3,HNRNPK和IGF2BP2-3位于细胞的突起(protrusion)。

甲基化可以促进翻译或影响某一转录本的稳定性,这取决于揎细胞环境下哪个读取器占据主导地位,如Figure 3所示:

在某些刺激下,例如热休克应激或病毒感染会诱导细胞质中的YTHDF进入细胞核。在热休克出现的几小时内,YTHDF2的转录本与蛋白水平都上升,并且多数YTHDF2转移到细胞核内。有人认为,YTHDF2核心的YTHDF2会与去甲基化酶FTO竞争,阻止那些热休克应答基因5‘UTR的去甲基化,从而增强这些基因在细胞质中非加帽方式的翻译(cap-independent translation)。体外实验发现,YTHDF2能抑制FTO的去甲基化活性。在Vero细胞感染实验中,细胞感染了enterovirus type 71后,YTHDF1和YTHDF2会上调,并且在感染12小时后分布在细胞质,感染24小时后分布在细胞核,这一现象机制不明。

在有丝分裂后期的细胞中,当需要功能蛋白时,YTHDF1的翻译促进作用就变得特别明显(Figure 3)。在损伤诱导的轴突再生的背根节(DRG)模型中,再生相关基因大量地被甲基化,在这个恢复过程中,YTHDF1是蛋白质强烈合成所必需的条件;相比之下,YTHDF1在损伤前的基础翻译增强方面,作用很小。这一现象与最初在HeLa细胞中研究YTHDF1时类似,YTHDF1会促进一些转录本的翻译。在关于记忆研究方面,有研究发现,YTHDF1的缺陷会导致海马依赖性神经元功能出现障碍,恢复YTHDF1的蛋白水平,则能修复这种问题。YTHDF1依赖的翻译增强会在一些癌细胞中持续出现,而在其它一些细胞中则是由刺激诱导的,这一过程是如何触发的,还不清楚。

YTHDF1-3的结构类似,它们都含有N末端低复杂序列,和C末端的保守YTH结构域。但是它们的功能并不相同,在不同的细胞中,它们有的能促进蛋白翻译,有的能抑制蛋白翻译,具体的案例可以参考原文。并且在不同的m6A阅读器蛋白之间还存在着交叉作用或竞争作用,即使在FTO和阅读器之间,也有着类似的作用。因为这些蛋白本身就构成了一个有相互作用的网络结构,因此要理解它们的环境调控作用对于相关的研究有着重要意义。

m6A甲基化可以被FTO或ALKBH5逆转,这两个蛋白也就是m6A擦除器。FTO是第一个被发现的m6A擦除器。FTO能够去甲基化m6Am,以及部分mRNA上的cap-m6Am,如Figure 4所示:

CLIP-seq验证了很多FTO的结合位点,这些结合位点包括tRNAs,snRNA等。FTO的空间分布也能发挥调控作用,FTO的N末端有一个NLS,它能部分地分布在细胞核中,也能分布在细胞质中,FTO的分布在不同的细胞系中有所不同,例如在AML细胞中的分布和HEK,HeLa细胞中的分布就不同,这可能与肿瘤的发生有关,FTO在AML细胞中的这种分布也有可能是环境依赖的,因为2HG(2-hydroxy-glutarate)能抑制FTO。

CLIP-seq的测序数据分析表明,在某些细胞系中,FTO偏爱结合GAC-和/或GGAC模序。有研究发现,FTO的表达和定位可能被PTM调控(例如Lys-216)。

位于mRNA的5'cap中的+1核糖上,它几乎是与内部m6A(internal m6A, 这个内部指的是mRNA中间的部分 )同时发现的。m6A可能占据了整个腺苷酸的0.1%-0.4%,它主要发生在第二个核苷酸2’-O-methylated( )的帽子结构附近。只有不到30%的 含有m6Am。m6Am的比例占到整个mRNA的m6A十分之一或更低(在一些细胞系中还要低)。m6A丰度要远高于 ,因此,虽然FTO更偏爱结合 ,但是FTO的主要靶点还是m6A。由于几乎所有的mRNA帽子结构都在胃镜核中被加帽蛋白结合,因此在细胞核中,cap- 不太可能被去甲基化,这也反映了FTO对 的局限,如Figure 4所示。现在研究发现的FTO还功能涉及:热休克应答,UV损伤应答,HCV感染等方面。

最初研究认为FTO介导的 的去甲基化在功能上类似于DCP-2介导的去帽(decapping)化诱导mRNA的降解以及miRNA介导的mRNA降解。当敲低FTO后,FTO的靶mRNA出现了很多变化,这些效应被认为是由于 的去甲基化导致的,但是FTO敲低与那些只含有m6A或 转录本水平之间的相关却不支持这个结论,并且发现只有内部m6A修饰的转录本的变化与FTO的敲低相关。

后来发现了PCIF1是mRNA的 甲基转移酶,它只加工 ,却不加工内部的m6A(internal m6A)。还有研究发现,PCIF1添加的 并不改变基因表达的水平或转录本的稳定性,这也不支持刚开始的观点,即FTO介导的 的去甲基化导致的mRNA降解。另外,有研究发现,当FTO敲低时, 被认为还能促进那些含有 mRNA的翻译效率,但也有一些研究发现了相反的现象,这一过程的调控也有可能是与环境有关。

ALKBH5是第二个被发现的m6A去甲基化酶。ALKBH5在小鼠的精子形成中发挥了作用,ALKBH5和FTO的表达在不同组织中各异。例如,在小鼠中,Alkhb5主要表达在睾丸,而Fto主要表达在大脑,这可能与它们参与的不同生物学途径有关。在人源细胞系中敲低ALKBH5后,会诱导其靶RNA从细胞核转移到细胞质。几乎所有报道的ALKBH5功能研究都揭示了类似的分子途径,ALKBH5介导某些转录本的3'UTR m6A,其中就包括促进缺氧诱导的HIF依赖的乳腺癌干细胞表型,通过ALKBH5-FOXM1途径调节的胶质母细胞瘤增殖和肿瘤发生,调控雄性生殖细胞中长3'UTR mRNAs的剪接和稳定。

作者在结论部分中讨论了两个问题,第一个是m6A的调控,第二个是m6A未解决的一些问题。

其中m6A的调控功能可能受几个层面的影响,包括以下几个方面

第一,m6A的功能取决于细胞分化和细胞的发育状态。

第二,m6A的功能可能被环境因素或细胞信号触发。

第三,m6A效应子的定位也影响了m6A的功能。

第四,即使是同一个转录本,m6A精确的定位和其它的修饰也会影响其功能。

关于m6A的一些关键问题还没搞清楚,包括以下几个方面:

第一,m6A效应子针对转录本的选择性和m6A位点的选择性是如何实现的?

第二,m6A效应子(包括写入器,擦除器,读取器)是如何整合到不同的生物信号转导与调控过程的?

纯生信分析套路 综述|癌症中m6A与非编码RNA之间相互作用新见解

说起国自然研究新宠儿 “m6A甲基化修饰” ,想必大家都不陌生,m6A甲基化是包括mRNA和ncRNA(即非编码RNA,包括miRNA,rRNA,circRNA和lncRNA等)在内的所有RNA最普遍的表观遗传修饰。越来越多的证据表明,m6A甲基化修饰在各种生理和病理过程中都起着至关重要的作用。今天就向大家分享一篇发表在Molecular Cancer(IF:15.302)杂志上的关于m6A与ncRNA在癌症中相互作用的综述文章。

Part 1.初识m6A甲基化真面目

m6A,又称N6-甲基腺苷,指腺嘌呤的第6位氮原子(N)发生了甲基化修饰,通过甲基化酶复合物对甲基进行“书写”(Writer)、“擦除”(Eraser)或“阅读”(Reader),进而对RNA发挥调控作用。

m6A甲基化的分子组成 —甲基化酶复合物

1)  甲基化转移酶(methyltransferase):被称为“编码器”(Writer),主要包括METTL3、METTL14、WTAP、KIAA1429、METL16、RBM15 / 15B等;

2) 去甲基化酶(demethylase):被称为“消码器”(Eraser),主要包括FTO、ALKBH5等;

3)  m6A识别因子(recognition factors): 被称为“读码器”(Reader),主要包括YTHDC1/2、YTHDF1/2/3、HNRNP、eIF3、IGF2BP1 / 2/3等。

图1.m6A甲基化修饰示意图:m6A甲基化是一个动态可逆的过程,由“Writer”、“Eraser”、“Reader”三者共同完成。

Part 2.m6A甲基化修饰miRNA

miRNA的失调参与多种生物学行为,如小鼠胎儿发育,免疫应答,炎症反应和致癌等,研究表明,m6A甲基化可以修饰参与多种miRNA的成熟,参与该过程的主要是甲基化转移酶METTL3和METTL14等:

① METTL3促进miR-25-3p成熟,miR-25-3p在胰腺导管腺癌(PDAC)中起关键作用;

② METTL3增强pri-miR-221 / 222与DGCR8的结合,而DGCR8参与了膀胱癌的增殖;

③ METTL3促进pri-miR-1246的成熟从而促进结直肠癌(CRC)的转移;

④ METTL3加速miR-143-3p的成熟,导致METTL3 / miR-143-3p / vasohibin-1轴的形成,有利于肺癌的转移;

⑤ METTL3通过修饰多个miRNA(miR-106b,miR-18a / b,miR-3607,miR-423,miR-30a,miR-320b/d /e)影响砷诱导的癌变;

⑥ METTL14促进pri-miR-126的成熟,从而可以抑制肝癌(HCC)的侵袭和转移。

图2. m6A甲基化修饰miRNA:调节胰腺导管腺癌,肺癌,肝癌,膀胱癌和结直肠癌等癌症的发生和转移

Part 3.m6A甲基化修饰lncRNA

lncRNA一般指长度大于 200 个核苷酸的非编码 RNA,可在癌症中被m6A甲基化修饰,参与该过程的主要是甲基化转移酶METTL3、METTL14,去甲基化酶ALKBH5,m6A识别因子YTHDF1、IGF2BP2等:

① MALAT1是首个被发现与肺癌相关的lncRNA,METTL3可以调节MALAT1-miR-1914-3p-YAP轴来诱导非小细胞肺癌的耐药和转移,还可以通过MALAT1/miR-145/FAK途径加重梗阻性肾病的肾纤维化;

② METTL3上调LINC00958,并使miR-3619-5p海绵化而促进HCC细胞的迁移和侵袭;

③ METTL3家族成员FAM225A充当海绵miR-590-3p / miR-1275的ceRNA和上调ITGB3来促进鼻咽癌(NPC)的发生和转移;

④ METTL3/14通过上调DKK1的lncRNA激活调节剂(LNCAROD)来增强头颈部鳞状细胞癌(HNSCC)的迁移;

⑤ METTL3介导lncRNA RP11通过Zeb1的上调增强CRC迁移和侵袭,而

METTL14增加lncRNA XIST的m6A水平,抑制CRC的增殖和转移;

⑥ ALKBH5通过维持FOXM1表达和细胞增殖程序来维持胶质母细胞瘤类干细胞(GSCs)的致瘤性,lncRNA FOXM1-AS可促进ALKBH5与FOXM1之间的相互作用;

⑦ ALKBH5通过减少lncRNA NEAT1的甲基化来促进胃癌(GC)的侵袭和转移。

⑧ YTHDF1与LINC00278相互作用可抑制食管鳞状细胞癌(ESCC)转移,而ALKBH5则促进ESCC转移;

⑨ IGF2BP2作为m6A读取器调节LncRNA DANCR,有利于胰腺癌的致癌性。

图3. m6A甲基化修饰lncRNA:参与多种癌症的肿瘤发生和转移,包括GSC,HNSCC,NPC,ESCC,肺癌,GC,HCC,胰腺癌和CRC

Part 4. m6A甲基化修饰circRNA

circRNA一般指环状RNA。环状RNA(circRNA)是一类特殊的非编码RNA分子(在活体中有时也有表达),也是RNA领域最新的研究热点。

circRNA在蛋白质翻译中起着至关重要的作用: METTL3和YTHDC1与环状RNA锌指蛋白609(circ-ZNF609)的代谢有关,并促进其生成,circ-ZNF609促进蛋白翻译和成肌细胞增殖;核糖体-circRNAs的“迷你基因”可以促进果蝇头部的蛋白翻译;

m6A甲基化会影响cricRNAs的蛋白质翻译: m6A基序在circRNA中富集,单个m6A位点被认为是启动circRNA翻译的触发器。m6A调控因子METTL3/14、FTO、YTHDF3和起始因子eIF4G2参与了m6A驱动的蛋白翻译。哺乳动物细胞可以识别circRNAs上的m6A修饰,通过抑制免疫基因激活和佐剂活性来抑制先天免疫。

circRNA的失调与多种癌症进展相关: circNSUN2的m6A甲基化修饰可促进细胞质输出并稳定HMGA2,从而促进结直肠肝转移;circPVRL3的m6A甲基化修饰可促进胃癌细胞的增殖和迁移。

表1:m6A甲基化修饰癌症中的ncRNA

Part 5. ncRNA调节癌症中的m6A甲基化

非编码RNA(ncRNA)具有影响涉及多个生物学过程m6A水平的能力。

miRNA调节癌症中的m 6 A甲基化:

① miR-33a通过靶向METTL3 mRNA抑制NSCLC细胞的增殖;

② miR-600抑制METTL3的表达并逆转了METTL3对NSCLC进展的积极作用;

③ miRNA let-7g通过靶向3'UTR下调METTL3表达,加速乳腺癌细胞的增殖;

④ miR-1266通过直接靶向FTO促进CRC的发生和发展;

⑤ miR-145通过靶向YTHDF2来抑制HCC的增殖;

⑥ miR-488是一种通过靶向eIF3a发挥作用的抑癌miRNA,还参与NSCLC细胞中eIF3a介导的顺铂耐药性;

⑦ miR-141通过形成miR-141 / IGF2BP2 / P13K / Akt轴来抑制胰腺癌的增殖。

lncRNAs调节癌症中的m 6 A甲基 化 :

① lncRNA LINC00470与METTL3相互作用促进PTEN mRNA降解,从而促进GC进程;

② lncRNA miR503HG通过调节肝细胞癌中的HNRNPA2B1 /NF-κB途径来抑制肿瘤转移;

③ lncRNA LINC01234与HNRNPA2B1相互作用,促进NSCLC中的细胞增殖并抑制细胞凋亡;

④ lncRNA LIN28B-AS1与IGF2BP1相互作用,促进肺腺癌(LUAD)的增殖和转移;

⑤ lncRNA LINRIS可稳定IGF2BP2并促进CRC增殖;

⑥ lncRNA GAS5-AS1与ALKBH5相互作用调节GAS5的表达抑制子宫颈癌(CC)细胞的增殖,迁移和侵袭;

⑦ lncRNA GAS5可以抑制YAP介导的YTHDF3,从而抑制CRC的增殖;

⑧ lncRNA GATA3-AS增强KIAA1429和GATA3 pre-mRNA之间的相互作用,促进肝癌的进展。

表2:ncRNA调节癌症中的m6A甲基化

Part 6. m6A甲基化在癌症中的临床应用

m6A甲基化是癌症诊断和预后的新生物标记

① METTL3,YTHDC2和HNRNPC用于预测HNSCC患者的预后;

② METTL3/FTO上调或YTHDF2和METTL14下调可能预示GC、CRC和HCC的生存率较差;

③ METTL14低表达与肿瘤分化、临床分期、微血管浸润有关;

④ ALKBH5或FTO下调预示肺癌和HCC预后不佳;

⑤ IGF2BP2被认为是胰腺癌,食管胃交界腺癌和CRC的预后标记物。

m6A甲基化参与耐药性和癌症治疗

① METTL3稳定YAP和ARHGAP5,诱导NSCLC和胃癌顺铂耐药;

② HNRNPA2B1在他莫昔芬耐药乳腺癌中过表达,降低他莫昔芬的敏感性;

③ METTL3、METTL14、FTO、YTHDF2在急性髓性白血病(AML)中过表达,FTO抑制剂(FB23)及其衍生物(FB23-2)通过靶向FTO促进AML中的髓样分化和凋亡;

④ m6A甲基化参与胃癌的肿瘤微环境和TME浸润特征评估;

⑤ YTHDF2与炎症浸润,血管重建和远处转移相关,并预示肝癌的不良预后。

生信人往期也有很多有关m6A的好文章可学习:

m6A+免疫浸润

m6A+突变思路

m6A调节因子泛癌分析

结语

越来越多的研究关注于m6A甲基化如何改变ncRNA的稳定性、剪接和翻译,或ncRNA如何在癌症中调控m6A。m6A甲基化与ncRNA的相互作用可影响肿瘤细胞增殖、侵袭和转移等不同的生命活动。就m6A甲基化的临床应用而言,可作为癌症诊断、预后和治疗的潜在靶点。然而,m6A甲基化与ncRNA之间的特异性结合位点还需要进一步研究。

无论是对于正在为写标书申基金发愁的老师们,还是正在为毕业课题发愁的研究生们来说,相信这篇综述都能够帮助你更好的理解m6A甲基化与ncRNA之间的相互作用,为你的课题添光加彩,感兴趣的小伙伴们赶快阅读起来吧!

m6A-RNA 甲基化 - MedChemExpress

近期,美国康奈尔大学 Samie R. Jaffrey 研究组在  Cell  上发表了题为 “ A Unified Model for the Function of YTHDF Proteins in Regulating m6A-Modified mRNA ” 的研究,揭示了 YTHDF 蛋白调节 m6A 修饰的 mRNA 的功能统一模型。

与“不同的 m6A 位点结合不同的 DF 蛋白”的主流观点不同,该研究人员发现,所有 m6A 位点与三个 DF 蛋白都以基本相似的方式结合,它们以冗余的作用方式诱导同一子集的 mRNA 降解,没有证据表明它们能直接促进翻译。

图 1.YTHDF 蛋白调控m6A 修饰的 mRNA 的功能模型

m6A   (N6-methyladenosine):是指腺嘌呤核苷 N6 位置发生了甲基化修饰。m6A 是真核 mRNA 最普遍的内部修饰,在功能上调节真核转录组,影响 mRNA 的剪接、输出、定位、翻译和稳定性。

m6A修饰有三类调节器:

Writer    甲基转移酶 (MTC),负责催化,例如 METTL3、METTL14 和 WTAP;

Eraser   去甲基化酶 (Demethylase),负责去除甲基化,例如 FTO 和 ALKBH5;

Reader    直接识别和结合 m6A 位点,使 m6A 修饰的 RNA 发挥特定的作用,主要包括 YTHDC1、YTHDF1、YTHDF2、YTHDF3 等。

YTHDF :一种 m6A“阅读器”,即 Reader。胞质中的 YTHDF 家族包括了 YTHDF1、YTHDF2 和 YTHDF3 三种旁系同源物 (paralogs),也可以简称为 DF1、DF2、DF3。据报道,三种 DF 有不同的功能,DF1 促进 mRNA 的翻译,DF2 促进 mRNA 的降解,DF3 促进翻译和降解。

关于 DF 旁系同源物选择性地结合不同的 m6A 位点的机制目前尚未清楚。此外,DF 蛋白功能差异的机制基础也仍不清楚,尤其是在它们同源性很高的情况下。

图 2. 研究亮点

首先,研究人员观察 DF1 和 DF2 YTH 结构域与含有 m6A 的 RNA 的结合,发现在整个转录组中,DF 蛋白结合m6A 的氨基酸以及结合近端的氨基酸都是保守的,因此 三个 DF 蛋白与 m6A 结合的结构机制是相同的 。

DF 旁系同源物结合 m6A 序列基序 (Sequence motifs) 的差异反映可以其结合特性,研究发现 m6A 残基几乎只存在 DR-m6A-CH (D = A, G, U; R = A, G; H = A, C, U) 这一个高度保守的序列基序中,像GG-m6A-CU、AG-m6A-CU 都属于DR-m6A-CH 的亚基序 (Submotif) 。

为了确定每种 DF 的结合偏好,研究人员通过全转录组 iCLIP 图谱,检测了 HEK293T 细胞内源性表达的 DF1、DF2 和 DF3 的结合位点,分析发现三种 DF 结合位点序列亚基序的偏好相同。再结合已报道的 PAR-CLIP 数据,发现即使用不同的细胞系和不同的 CLIP 方法,DF 旁系同源物的 RNA 结合基本相同。因此,  DF 旁系同源物的 m6A 结合模式相同 。

图 3. DF 蛋白与m6A结合位点的转录组分析

但是,不同的 DF 如何对m6A-mRNAs 发挥不同的分子效应这个问题仍未解决,研究人员又分析了 DF 旁系同源物之间的效应区域差异,以及它们的相互作用蛋白 (不同的 DF 蛋白可能通过与不同的蛋白相互作用介导其不同的功能)。结果显示, DF 旁系同源物的序列、功能域、相互作用蛋白和细胞内定位都高度相似 。

此外,研究人员还发现  DF 蛋白与降解有关的因子相互作用可信度较高,与翻译相关的因子相互作用可信度较低 。

根据已有报道,研究人员考虑到每种 DF 蛋白都有介导 m6A-mRNA 降解的可能性。于是,他们利用 siRNA 选择性敲降 HeLa 细胞中的 DF1、DF2 和 DF3,使用 RNA-seq 检测 mRNA 的丰度,证实是 DF2 影响了 m6A-mRNA 稳定性,而非 DF1 或 DF3。

图 4. DF 蛋白冗余地控制 m6A-mRNA 的丰度和稳定性

再对 DF 进行不同组合的双重敲降和三重敲降,并利用放线菌素 D (Actinomycin D)  抑制转录后 m6A-mRNA 的水平证明了: DF 蛋白的联合活性导致 m6A 修饰的 mRNA 降解,DF旁系同源物在功能上可以互相补偿,这种补偿功能也受其表达水平限制。当三种 DF 都耗竭时,补偿就不会发生,这时 m6A-mRNA 的稳定性得到最大程度的提高 。

接下来,研究人员检测了 DF 在 m6A-mRNA 的翻译调控中的作用。三种 DF 都与多聚核糖体组分无关,而富集于信使核糖核蛋白 (mRNP) 组分,该结果与 “DF 蛋白(任何一种) 稳定地结合至 mRNA 3'UTR,增强其翻译的模型” 不一致。

任何的 DF 旁系同源物基因沉默都不影响 HeLa 细胞中 mRNA 的翻译效率,即使是 DF 三重敲降也没有显著降低翻译效率。因此, 任何一种 DF 同源旁系物都不能直接增强 mRNA 的翻译,相反的,它们的主要作用是介导 m 6 A-mRNA 降解 。

图 5. DF 蛋白冗余地抑制白血病细胞的分化

已有报道 DF2 在急性髓系白血病 (AML) 中过表达,与 AML 的发生和发展有关,DF2 的缺失导致一些抑制 AML 相关基因转录本上调,例如在 DF2 敲除的白血病前期细胞中, TNFRSF1B  转录本的半衰期增加,表面 TNFR2 的表达量上升。

为探索  TNFRSF1B  的抑制是否是通过三种 DF 蛋白共同作用介导,研究人员对  MOLM-13 白血病细胞中的 DF 进行单独或联合敲降,发现 TNFRSF1B  mRNA 表达水平受DF 的单独敲降影响较小,其中仅 DF2 的敲降使其略微升高,在三重敲降后却显著上调。因此,在 MOLM-13 细胞中  DF 蛋白共同作用控制 m6A-mRNA 的表达水平 。

小M 的思考

m6A 修饰已被证明与多种癌症的生长、转移和耐药性相关,小分子靶向m6A 修饰调节器是一种极具潜力的癌症治疗方法。

相关抑制剂 作用

SAH 氨基酸衍生物和几种代谢途径中的调节剂。METTL3-METTL14 异二聚体复合物 (METTL3-14) 的抑制剂

3-Deazaadenosine S-腺苷高半胱氨酸 (SAH) 水解酶抑制剂;通过抑制 SAH 水解来抑制 m6A 基团插入 mRNA 底物中

IOX1 甲基转移酶 ALKBH5 抑制剂

FB23-2 有效、选择性的 mRNA m6A去甲基酶 FTO 抑制剂

FG-2216/IOX3 HIF-PHD 抑制剂;在体外对 FTO 有抑制作用

Rhein 可逆地与 FTO 催化结构域结合,并竞争性地阻止了对 m6A 修饰底物的识别

Entacapone 特异的外周活性的邻苯二酚-O-甲基转移酶 (COMT) 抑制剂;竞争性 FTO 抑制剂

Meclofenamic acid 非甾体类抗炎化合物;FTO 抑制剂

缩写:

MTC:Methyltransferase complex

YTHDF: YT521-B homology domain-containing family/YTH domain family

原文阅读 : Sara Zaccara, et al. A Unified Model for the Function of YTHDF Proteins in Regulating M 6A-Modified mRNA. Cell. 2020 Jun 25;181(7):1582-1595.e18.

今天的内容先分享到这里了,读完本文《RNA甲基化专题 | 癌症研究篇》之后,是否是您想找的答案呢?想要了解更多,敬请关注www.zuqiumeng.cn,您的关注是给小编最大的鼓励。