导读单细胞DNA甲基化研究基础篇:从实验策略到数据分析方法简介答DNA甲基化是细胞分裂过程中遗传的一种表观遗传标记,影响细胞的生物学功能。而单细胞水平上的全基因组甲基化分析将...

今天运困体育就给我们广大朋友来聊聊广西甲基化文章,希望能帮助到您找到想要的答案。

单细胞DNA甲基化研究基础篇:从实验策略到数据分析方法简介

单细胞DNA甲基化研究基础篇:从实验策略到数据分析方法简介

DNA甲基化是细胞分裂过程中遗传的一种表观遗传标记,影响细胞的生物学功能。而单细胞水平上的全基因组甲基化分析将有助于深入了解转录调控和细胞异质性。

单细胞DNA甲基化研究怎么做?

来自韩国的科研人员在《 Biomolecules 》发表综述文章, 介绍了单细胞DNA甲基化分析方法,包括实验策略和数据分析;此外,还介绍了相关科研应用并讨论了未来的发展。

注:此篇综述没有介绍5mC分析方法,虽然介绍了许多多组学方法,但每种方法的单独分析过程未作深入讨论。

亚硫酸氢盐转化法被认为是DNA甲基化分析的金标准。 由于它的高转化率(>99%)、可重复性和通过商业试剂盒的简单易用性而受到研究人员的青睐。然而,亚硫酸氢盐转化法采用了导致DNA降解的苛刻反应条件,PBAT的开发即是为了解决降解造成的损失问题。

RRBS和WGBS是流行的全基因组甲基化分析方法。 这两种方法都包括亚硫酸氢盐转化和NGS制备。主要区别在于,RRBS使用适当的限制性内切酶和大小选择来筛选富含GC的区域。WGBS(特别是MethylC-seq)的优势在于能够覆盖基因组中的大部分CpGs。与RRBS相比,WGBS的纯化和筛选过程相对简单。在WGBS中防止亚硫酸氢盐转化过程中的降解损失被认为是相对重要的,因此许多基于WGBS的单细胞方法往往是基于PBAT的。

多组学方法是根据甲基化分析方法与其他分析方法(RNA、染色质可及性)相结合来区分的。 例如scM&T-seq是基因组和转录组测序(G&T-seq)与scBS-seq的结合,G&T-seq是一种基于Smart-seq2识别DNA和RNA的方法。此外,应用于单细胞甲基化分析方法的技术,如PBAT,也可以类似地应用于NOME-seq,NOMe-seq可以根据核糖体的存在与否,利用GpC甲基转移酶的染色质可及性差异,确认双硫酸盐转化的DNA中开放染色质和CpG甲基化。scCOOL-seq、iscCOOL-seq和scNome-seq可以一起监测染色质可及性和CpG甲基化。

通过转化以外的方法观察甲基化主要分为两类:利用甲基胞嘧啶的亲和结合和利用限制性内切酶对甲基胞嘧啶的敏感性。MBD-seq和MeDIP-seq是具有代表性的基于亲和性的方法。 基于亲和力的方法不适合在单细胞规模上应用 ,因为这些方法基于DNA片段产生平均DNA甲基化谱,这不允许区分单个细胞中DNA甲基化模式的差异。然而,与基于亲和力的方法不同, 基于MSRE的方法可以被改进, 使用MSRE的单细胞方法的细化可以在Methyl-seq中看到,scCGI-seq测量甲基化的方式与Methyl-seq类似。

在测序实验之后,包括RRBS或WGBS,需要对数据进行预处理。预处理步骤可分为 数据质控(QC)、序列修剪和比对 ,例如使用 FastQC 测量总体的基本测序数据质量,使用 Trim Galore!、fastp和Trimmomatic 等软件修剪,下表列出了常用的比对工具。

甲基化分析的主要目的是探索构成样本、器官和疾病状态(包括癌症)之间差异的表观遗传学证据。为了发现这些差异,需要一个暗示此概念的数值,一个广泛使用的术语是β值。在甲基化调用后,进行后续分析,如可视化分析的t-SNE,聚类分析,以及识别差异甲基化胞嘧啶(DMCs)或差异甲基化区域(DMRs)

上述方法主要依赖于单个CpG位点的甲基化水平。最近的甲基化分析利用了每个reads的甲基化模式来诊断疾病,尤其是癌症。这种新的分析概念是基于甲基化的生物学特性,即除非出现从头甲基化,否则相邻CpG位点之间有保持甲基化的趋势。 该读取模式方法能够检测具有疾病信号的DNA分子,并且具有增加疾病信号检测机会的可能性。 例如,一项大型液体活组织检测研究设计了一个集成分类器,根据读取模式分析对肿瘤类型进行分类,并在早期癌症的检测中显示出显著的结果。此外,通过甲基化模式对肿瘤衍生的DNA分子进行量化是观察肿瘤负担的另一种方法。

生殖细胞或胚胎细胞的成熟受到特定基因表达的影响,这与DNA中的甲基化水平相关。例如基于植入前的胚胎细胞的甲基化特征,利用单细胞甲基化测序,通过对早期胚胎系追踪的研究,研究植入前细胞甲基化的机制及其现象。研究团队观察到非CpG甲基化在卵母细胞成熟过程中不断积累,说明非CpG甲基化与CpG甲基化在卵母细胞成熟过程中的作用不同。

在疾病患者中,DNA甲基化的模式与健康人不同。在各种疾病中,癌症尤其具有正常细胞所不具有的DNA甲基化模式,从而导致基因表达水平的差异。在对具有这种异质性的癌症研究中,需要使用多组学方法,将基因组变异和RNA表达结合起来进行分析。例如一个研究小组最近开发了一种称为scTrio-seq2的方法,它整合了单细胞转录组和单细胞甲基化测序数据。多项研究表明使用单细胞甲基化测序(sc-methyl-seq)的多组学方法可以克服先前方法的局限性,并且具有更好的鉴别能力。因此,sc-methyl-seq可用于各个领域,以解决与生物过程和疾病相关的基本问题。

单细胞DNA甲基化研究仍存在一些问题。其中第一个问题是亚硫酸氢盐转化的降解问题,这是目前的金标准。然而,在数量有限的单细胞尺度上,由于降解而造成的损失比在体积尺度上更严重。为了解决这个问题,采用了PBAT等技术,但其性能无法与使用大量DNA的方法相比。近年来,利用TET酶活性的方法,如TAPS和EM-seq,已经被开发出来,并作为一种解决慢性降解问题的方法而受到关注。另一个问题是一个明确的标准分析过程还没有建立。由于这些挑战,目前最好的方法是引入多组学方法进行交叉验证。

随着数据采集的成本正在逐渐降低和数据联盟的建立(例如国际人类表观基因组联盟(IHEC)等),全面数据的积累可以提供一个了解甲基化的机会。关于甲基化证据的积累将使大家有可能找到因不同组织类型、不同实验或环境条件以及异质性疾病(如癌症)而波动的甲基化热点区域。此外,通过积累的数据发现细胞类型的特异性标记,将有利于通过单细胞DNA甲基化数据的可视化来进行细胞异质性分析,包括在t-SNE图中分配细胞集群。相信对甲基化及其在疾病中的生物学作用之间关系的理解将随着未来进一步的数据而得到揭示。

首发公号:国家基因库大数据平台  

参考文献

Ahn J, Heo S, Lee J, et al. Introduction to Single-Cell DNA Methylation Profiling Methods[J]. Biomolecules, 2021, 11(7): 1013.

易基因 | 精准医学:DNA甲基化图谱在发现和精确诊断神经肿瘤领域的应用

近年来,中枢神经系统(CNS)肿瘤的分类变得更加客观、更依托生物学认知。虽然过去的分子诊断包括特定突变、拷贝数变化或基因融合,但DNA甲基化测序的发展显著提高了诊断精度,增加了可靠性,并为发现新的肿瘤类型提供了思路。在大多情况下,基因突变/融合与DNA甲基化间存在着密切关系。在这篇综述中,作者强调了DNA甲基化图谱在中枢神经系统肿瘤分类中的作用,重点介绍了几种肿瘤类型,以及DNA甲基化图谱对目前肿瘤分类的贡献。

CpG 甲基化测定

有多种方法可以量化DNA甲基化,每种方法在临床肿瘤学中都有不同的应用。限制性内切酶酶切、亲和富集方法,如甲基化DNA免疫沉淀(MeDIP)和电化学检测都是用于测定全基因组甲基化的方法。基因组DNA的重亚硫酸盐测序是最常用的方法,重亚硫酸氢钠可以将未甲基化的胞嘧啶转化为尿嘧啶,除此之外还有全基因组重亚硫酸盐测序(WGBS)技术。图1概述了目前DNA甲基化图谱的诊断应用及其在外科神经病理学中的作用。

生物信息分析

为了将甲基化阵列数据转化为实际应用,需要执行各种分析和计算步骤。用甲基化数据描述肿瘤类型的一个比较常见和实用的方法是降维。类似于主成分分析(PCA),这些算法将高维数据(例如,数千个脑瘤样本,每个样本具有约20-30k数据)降至低维(2或3)以便于可视化(图2)。

值得一提的是,甲基化阵列数据中还可以获得其他对诊断有帮助信息。人们很早就认识到甲基化和非甲基化信号强度的总和可以用来推断全基因组的拷贝数,分段的拷贝数数据以及拷贝数断裂点的分析也会对诊断和基因融合的判断起到帮助作用。

诊断准确性及其对临床结果的影响

截止到目前,甲基化图谱已经识别出多个新的中枢神经系统肿瘤类型和亚型,其中许多都与临床病程和临床结果有着重要的关联。在临床中,甲基化数据分析在很多病例诊断结果的确定上起到了重要的辅助作用。

基于的临床检测出的差异甲基化数据,从前被归类为原始神经外胚层肿瘤现在被分类成多个不同的肿瘤类型,这些肿瘤包括具有高频率C19MC改变的多层菊形团胚胎性肿瘤(ETMR),具有 FOXR2 激活的中枢神经母细胞瘤(CNS-NB-FOXR2),BCOR串联重复的CNS肿瘤(CNS-BCOR-ITD)。总体而言,基于DNA甲基化数据的非监督分析对于CNS-PNET亚型间的区别具有重要的临床意义。

新型和罕见的肿瘤类型

除了在识别常见的中枢神经系统肿瘤类型方面的优势外,甲基化特征分析的一个新的优势是它能够发现新的肿瘤类型,并提供现有类型的确认/改进。例如, IDH1/2 突变定义了一个广泛的弥漫性胶质瘤亚型,这些亚型在临床和分子上与异柠檬酸脱氢酶(IDH)野生型弥漫性胶质瘤不同,这种遗传差异通过DNA甲基化图谱得到证实。甲基化图谱针对对于许多新的肿瘤类型在很大程度上已经成为了一种发现工具。

胶质瘤(Gliomas)

毛细胞型星形细胞瘤(HGAP)包括一个独特的甲基化群,包括 ATRX、TERT 启动子突变; CDKN2A/B 缺失/突变、 CDK4 扩增; NF1 缺失/突变、 BRAF 融合等。组织学表现与其他胶质瘤有很大重叠,HGAP多见于年轻人(中位年龄40岁),主要见于颅后窝。值得注意的是,HGAP在儿童(0-16岁)中发病是比较罕见的,这个年龄段的大多数形态学诊断的“毛细胞型星形细胞瘤伴间变”与其他甲基化类别聚集在一起,包括毛细胞型星形细胞瘤和IDH-野生型GBM。

目前,甲基化图谱是诊断这种肿瘤类型的唯一方法。在HGAP中发现的基因改变(如 CDKN2A/B 纯合缺失、 ATRX 突变、 BRAF 融合)是非特异性的,可见于其他中枢神经系统肿瘤类型。然而,检测到这些基因改变,就应该引起对HGAP的怀疑。临床上,HGAP与其他高级别胶质瘤的区别很重要,因为HGAP的预后比PA和PXA更具侵袭性,但总体存活率明显高于IDH-野生型GBM。HGAP被误诊为GBM的情况并不少见,精准诊断在临床上具有十分重要的意义,因此将组织学相似的肿瘤分解为生物学和临床相关的类型是DNA甲基化分类的显著优势之一(图3)。

神经胶质瘤(Glioneuronal Tumors)

弥漫性胶质神经元瘤具有少突胶质瘤样特征和核簇(DGONC)是最近提出的一种通过甲基化定义的肿瘤类型,它是通过对>25000个中枢神经系统肿瘤的非监督聚类而发现的。DGONC的组织学表型可能与其他肿瘤类型有显著重叠,包括少突胶质细胞瘤和CNS-PNET。在低级别胶质细胞或神经胶质细胞肿瘤中常见的遗传学改变,如FGFR1和BRAF,尚未在测序病例中发现。由于这种肿瘤类型的遗传驱动因素尚未阐明,DNA甲基化图谱仍然是检测其的唯一方法。在低级别胶质细胞或神经胶质细胞肿瘤中,典型的遗传学改变,如 FGFR1 和 BRAF ,尚未在测序病例中被发现。由于这种肿瘤的遗传驱动因素尚未明确,DNA甲基化图谱仍是其检测的唯一方法。

胚胎肿瘤(Embryonal Tumors)

多层菊形团胚胎性肿瘤(ETMR)是一种高度分级(WHO 4级)的原始中枢神经系统肿瘤,具有明显的组织学特征。ETMR甲基化图谱显示与其他中枢神经系统肿瘤类型明显分离,并形成一个相对同质的群体,无论是C19MC扩增还是 DICER1 突变状态。绝大多数病例存在多层菊形团和神经纤维团混合区域的特征性组织学特征。结合LIN28A免疫组织化学,在显微镜下即可作出诊断。尽管LIN28A具有很高的敏感性,但它的表达不是ETMR所特有的,在AT/RT、生殖细胞肿瘤和HGG中已有报道。因此,DNA甲基化分析是诊断ETMR的一种特异性方法,与潜在的组织病理学或基因突变无关,同时基于甲基化的拷贝数评估也可以作为识别潜在亚型的有用特征。

这些肿瘤类型之间的区别在临床上十分重要,通常可以通过组织病理学和影像学来解决。然而,非典型病例可能会造成诊断困难。AT/RT和PDC(脊椎)的平均OS分别为14.4个月和51个月(AT/RT不同亚型的生存期不同)。CRINET和DMT的生存数据有限,但已报道的平均OS分别为125个月(AT/RT-TYR为37个月)和36个月。尽管有共同的基因改变,AT/RT、PDC和DMT的DNA甲基化特征还是具有明显特异性的(图2)。到目前为止的数据表明,DNA甲基化图谱可以区分可能会构成诊断问题的大多数 SMARCB1 失活的中枢神经系统肿瘤。

间充质肿瘤(Mesenchymal Tumors)

伴有 CIC 基因重排的肉瘤是一种罕见的高级别间叶性肿瘤,同时发生于中枢和中枢神经系统外。在组织学上,伴有 CIC 基因重排肉瘤的特点是肿瘤细胞形态呈梭形或圆形,高度恶性(增殖、坏死),并有数量不等的粘液基质。特征性的基因改变是 CIC 与各种配对基因的易位,导致作为显性癌基因的融合。在中枢神经系统中,最常见的是 CIC-NUTM1 融合,由t(15;19)易位。在 CIC 融合阳性的病例中,有14%的 CIC 裂解FISH呈假阴性。此外,在融合阴性的病例中也发现了 CIC 突变。最近的一份报告还指出,出现了涉及 ATXN1 和 DUX4 的非 CIC 融合基因。在甲基化图谱上根据 CIC 基因将肉瘤重新分成不同的组,与潜在的融合基因/突变或解剖部位无关(图2)。

DICER1 突变的原发性颅内肉瘤是一种新发现的高度恶性肉瘤,由染色体14q32.13上 DICER1 基因的体细胞或胚系突变所定义。发生在胚系 DICER1 突变背景下的肿瘤可能代表遗传性或综合征性关联(即 DICER1 综合征)。胚胎型横纹肌肉瘤的组织学特征常见于肌源性分化、形态学和免疫表型重叠。因此,初步命名为“具有横纹肌肉瘤样特征的梭形细胞肉瘤, DICER1 突变体”。 DICER1 突变的颅内肉瘤的组织学表现没有特异性,可能与其他肉瘤如滑膜肉瘤、纤维肉瘤和胶质肉瘤重叠。而DNA甲基化分析可以很容易地将 DICER1 突变的原发性颅内肉瘤与其它肿瘤类型区分开来。然而,还需要进一步的研究来评估DNA甲基化分析是否能将其与转移性 DICER1 突变肿瘤区分。

已建立的中枢神经系统肿瘤的表观遗传学亚型

作者在这篇文章中还提供了DNA甲基化图谱对已建立的世卫组织中枢神经系统肿瘤亚型的贡献的例子。世界卫生组织对中枢神经系统肿瘤的第5版分类预计将包括更多分子定义的亚型。甲基化阵列分析已被证明能有效地识别并在某些情况下定义这些亚型。

易基因小结

将DNA甲基化分析整合到中枢神经系统肿瘤的常规检查中,可以提高诊断的准确性以及实现明确肿瘤类型的临床意义。捕捉原发性中枢神经系统肿瘤的遗传异质性是DNA甲基化图谱最大的优势。尤其在组织学上不明确的肿瘤类型中具有重要价值,这些肿瘤类型可能含有靶向改变(例如,IHG)。DNA甲基化在确认组织学诊断方面的可靠性已经得到证实。

在骨骼和软组织病理学中实施的基于DNA甲基化阵列的分类可能预示着其他疾病领域得检测也会发生类似的转变。在通过TCGA分析的33种癌症中,全基因分子图谱显示了基于DNA甲基化数据的无监督聚类的所有类型中具有生物学或预后意义的亚群,进一步强调了DNA甲基化在其他癌症中的潜在临床应用价值。鉴于中枢神经系统肿瘤诊断对甲基化特征的日益依赖及其在临床分类标准中的应用,在诊断神经病理学的实践中,特别是对于罕见的中枢神经系统肿瘤,有必要进一步研究和利用DNA甲基化检测这一对临床诊断有巨大帮助作用的技术。

甲基化酶是促进甲基化吗

是。根据DNA甲基化与DNA甲基化酶的最新研究进展得知,DNA甲基化酶是催化DNA中碱基的甲基化作用的酶,甲基化酶是增添甲基的,效果就是甲基化。原核生物甲基化酶是作为限制与修饰系统中的一员,用于保护宿主DNA不被相应的限制酶所切割。

dna甲基化检测原理及方法?

DNA甲基化是重要的表观遗传修饰,它涉及到DNA分子上甲基基团的加入。甲基化在基因组稳定性、基因表达调控以及细胞分化和发育等过程中起着关键作用。

DNA甲基化的检测原理主要基于两种方法:甲基化特异性酶切和甲基化特异性结合。

1、甲基化特异性酶切:该方法利用DNA甲基化与未甲基化DNA的敏感性差异,通过特定的限制性内切酶进行酶切反应。未甲基化DNA序列容易被酶切,而甲基化的DNA则不易受酶切。然后,通过聚合酶链反应PCR或者核酸杂交等方法来检测酶切产物,从而确定DNA区域的甲基化状态。

2、甲基化特异性结合:该方法利用DNA甲基化与未甲基化DNA序列的化学结构差异,使用甲基化特异性蛋白质或甲基化特异性抗体与DNA结合。这些蛋白质或抗体可以识别并结合甲基化的DNA区域,然后通过免疫沉淀、荧光等方法来检测甲基化的DNA序列。

常用的DNA甲基化检测方法包括:甲基化特异性PCR(MSP)、全基因组甲基化测序(WGBS)、甲基化敏感限制性内切酶联PCR(MSRE-PCR)、甲基化特异性聚合酶链反等。

DNA甲基化检测方法主要利用DNA甲基化与未甲基化DNA在物理性质或化学性质上的差异,通过特定的实验操作和分析手段,以确定DNA序列的甲基化状态。这些方法在生物医学研究和临床诊断中发挥着重要作用。

易基因|一文读懂:十大DNA甲基化研究核心问题

DNA甲基化是最早被发现、也是研究最深入的表观遗传调控机制之一,近年来关于DNA甲基化的研究成果屡屡见刊。我翻阅各类文献,为大家总结了十大DNA甲基化研究核心问题,包括什么是DNA甲基化,DNA甲基化的主要形式、DNA甲基化与去甲基化、植物中的DNA甲基化、DNA甲基化的主要功能、DNA甲基化作为生物标志物的潜力、DNA甲基化的主要研究方向、DNA甲基化检测方法、样本不同如何选择DNA甲基化检测技术、DNA甲基化数据挖掘等,让您一文读懂DNA甲基化。

1、什么是DNA甲基化

DNA甲基化(DNA methylation)为DNA化学修饰的一种形式,是指DNA分子在DNA甲基转移酶的作用下将甲基选择性地添加到特定碱基上的过程。DNA甲基化能够在不改变DNA序列的前提下,改变遗传表现,是最重要的表观遗传调控方式之一。

2、DNA甲基化的主要形式

5-甲基胞嘧啶(5-mC):最重要的一种DNA甲基化修饰,广泛存在于植物、动物等真核生物基因组中, 称誉为“第五碱基”。

5-羟甲基胞嘧啶(5-hmC):哺乳动物的“第六碱基”。

N6-甲基腺嘌呤(N6-mA):在细菌、藻类及动植物基因组中存在。

7-甲基鸟嘌呤(7-mG)

3、DNA甲基化与去甲基化(5mC):

DNA甲基化反应分为2种类型:一种是2条链均未甲基化的DNA被甲基化,称为从头甲基化(denovo methylation);另一种是双链DNA的其中一条链已存在甲基化,另一条未甲基化的链被甲基化,这种类型称为保留甲基化(maintenance methylation)。

甲基化的DNA可以发生去甲基化。DNA的去甲基化由基因内部的片段及与其结合的因子所调控,包括:

主动去甲基化(Active demethyaltion):哺乳动物TET酶主动去甲基化,5mC经过TET作用转化成5hmC。

被动物甲基化(Passive demethylation):DNA通过不断复制丢失/稀释甲基化。

4、植物中的DNA甲基化

对于植物而言,面对生长环境的改变,表观遗传的变异会改变植物DNA的构象,从而改变染色质和蛋白质的结构,达到调节基因组的作用。研究发现,当植物面临生物胁迫和非生物胁迫时,植物基因组中DNA甲基化会发生改变,并且这些改变会遗传给后代。所以DNA甲基化的改变能够丰富植物物种的多样性,加强植物的环境适应性。

不同于哺乳动物基因组只有CG甲基化,植物基因组甲基化有CG,CHG,CHH(H代表任何非G的碱基)甲基化。而维持这三种不同的DNA甲基化的分子机制非常复杂。

5、DNA甲基化的主要功能

DNA甲基化能引起染色体结构、DNA构象、DNA稳定性及DNA与蛋白质相互作用方式改变,从而控制基因的表达。

保持基因组遗传物质的稳定性(TE的高甲基化)

调控基因的表达(顺式作用元件的动态甲基化,如Promoter/Enhancer等)

DNA甲基化参与基因转录调控、细胞分化、胚胎发育、X染色体失活、基因印记和肿瘤的发生等过程。

6、DNA甲基化作为生物标志物的潜力

相比基因组,DNA甲基化能够反应环境的影响

DNA甲基化不像基因组那么一成不变,也不像转录组和蛋白组那么不稳定。

DNA甲基化处于动态变化中,能够像年轮一样记录环境因素的影响。

DNA甲基化标志物是最有应用前景的表观遗传标志物 。

7、DNA甲基化的主要研究方向

8、DNA甲基化检测方法

目前研究中常用的DNA甲基化测序方法包括全基因组(WGBS、oxWGBS等)、简化基因组(dRRBS、RRBS、XRBS等)、靶向基因组(液相捕获)、靶向基因(TBS)和850K芯片等,适用于多种不同应用场景。

WGBS和RRBS用于基因组范围内研究探索,并筛选目标基因(候选DNA甲基化标记物)

TBS用于后续目标基因的甲基化验证

9、样本不同,如何选择DNA甲基化检测技术

易基因结合十余年DNA甲基化研究经验,全面总结了不同样本类型对于不同DNA甲基化检测工具选择的不同,技术推荐标准可以分为三点:

最有力方案(金标准):WGBS/微量WGBS/scWGBS 

最具性价比方案:RRBS/dRRBS/XRBS(动物)

大规模临床转化/目标区域甲基化验证:TBS 

10、DNA甲基化数据挖掘

DNA甲基化一般遵循三个步骤进行数据挖掘。首先,进行整体全基因组甲基化变化的分析,包括平均甲基化水平变化、甲基化水平分布变化、降维分析、聚类分析、相关性分析等。其次,进行甲基化差异水平分析,筛选具体差异基因,包括DMC/DMR/DMG鉴定、DMC/DMR在基因组元件上的分布、DMC/DMR的TF结合分析、时序甲基化数据的分析策略、DMG的功能分析等。最后,将甲基化组学&转录组学关联分析,包括Meta genes整体关联、DMG-DEG对应关联、网络关联等。

今天的内容先分享到这里了,读完本文《甲基化研究的最新进展》之后,是否是您想找的答案呢?想要了解更多,敬请关注www.zuqiumeng.cn,您的关注是给小编最大的鼓励。