生物:什么是碱基?
今天运困体育就给我们广大朋友来聊聊陕西甲基化m1a结果,希望能帮助到您找到想要的答案。
- 1、生物:什么是碱基?
- 2、为什么甲基化是基因沉默的结果,而不是原因
- 3、物质学中什么是基团?
- 4、生物化学王镜岩高教3版
- 5、m6A的前世今生
- 6、碱基互补规律的名词解释
- 7、有没有 RNA 甲基化测序的技术
本文目录导航:
生物:什么是碱基?
最佳答案碱基(base)
碱基指嘌呤和嘧啶的衍生物,是核酸、核苷、核苷酸的成分。DNA和RNA的主要碱基略有不同,其重要区别是:胸腺嘧啶是DNA的主要嘧啶碱,在RNA中极少见;相反,尿嘧啶是RNA的主要嘧啶碱,在DNA中则是稀有的。
除主要碱基外,核酸中也有一些含量很少的稀有碱基。稀有碱基的结构多种多样,多半是主要碱基的甲基衍生物。tRNA往往含有较多的稀有碱基,有的tRNA含有的稀有碱基达到10%。嘌呤和嘧啶碱基是近乎平面的分子,相对难溶于水:在约260纳米的紫外光区有较强的吸收。 结构
在脱氧核糖核酸和核糖核酸中,起配对作用的部分是含氮碱基。5种碱基都是杂环化合物,氮原子位于环上或取代氨基上,其中一部分(取代氨基,以及嘌呤环的1位氮、嘧啶环的3位氮)直接参与碱基配对。 碱基置换类型及缺失和插入突变示意图[2]碱基共有5种:胞嘧啶(缩写作C)、鸟嘌呤(G)、腺嘌呤(A)、胸腺嘧啶(T,DNA专有)和尿嘧啶(U,RNA专有)。顾名思义,5种碱基中,腺嘌呤和鸟嘌呤属于嘌呤族(缩写作R),它们具有双环结构。胞嘧啶、尿嘧啶、胸腺嘧啶属于嘧啶族(Y),它们的环系是一个六元杂环。RNA中,尿嘧啶取代了胸腺嘧啶的位置。值得注意的是,胸腺嘧啶比尿嘧啶多一个5位甲基,这个甲基增大了遗传的准确性。
碱基通过共价键与核糖或脱氧核糖的1位碳原子相连而形成的化合物叫核苷。核苷再与磷酸结合就形成核苷酸,磷酸基接在五碳糖的5位碳原子上。
作用 组成DNA
DNA(脱氧核糖核酸)的结构出奇的简单。DNA分子由两条很长的糖链结构构成骨架,通过碱基对结合在一起,就象梯子一样。整个分子环绕自身中轴形成一个双螺旋。两条链的空间是一定的,为2nm。 碱基在形成稳定螺旋结构的碱基对中共有4种不同碱基。根据它们英文名称的首字母分别称之为A(ADENINE 腺嘌呤)、T(THYMINE 胸腺嘧啶)、C(CYTOSINE 胞嘧啶)、G(GUANINE 鸟嘌呤),另有U(URACIL尿嘧啶)。DNA与RNA共有的碱基是腺嘌呤、胞嘧啶和鸟嘌呤。胸腺嘧啶存在于DNA中,而尿嘧啶则存在于RNA中。每种碱基分别与另一种碱基的化学性质完全互补,嘌呤是双环,嘧啶是单环,两个嘧啶之间空间太大,而嘌呤之间空间不够。这样A总与T配对,G总与C配对。这四种化学“字母”沿DNA骨架排列。“字母”(碱基)的一种独特顺序就构成一个“词”(基因)。每个基因有几百甚至几万个碱基对。
嘌呤和嘧啶都有酮-烯醇式互变异构现象,一般生理pH条件下呈酮式。 AGCT(U)四种碱基在DNA中的排列遵循碱基互补配对原则
有些核酸中含有修饰碱基(或稀有碱基),这些碱基大多是在上述嘌呤或嘧啶碱的不同部位甲基化(methylation)或进行其它的化学修饰而形成的衍生物。例如有些DNA分子中含有5-甲基胞嘧啶(m5C),5-羟甲基胞嘧啶(hm5C)。某些RNA分子中含有1-甲基腺嘌呤(m1A)、2,2-二甲基鸟嘌呤(m22G)和5,6-二氢尿嘧啶(DHU)等。
构成物质
碱基还构成一些生命必须物质或是重要的辅酶,如ATP,GTP,CoA等,对生命活动的作用非常大。
互补原则
(the principle of complementary base-pairing) 碱基在DNA分子结构中,由于碱基之间的氢键具有固定的数目和DNA两条链之间的距离保持不变,使得碱基配对必须遵循一定的规律,这就是Adenine(A,腺嘌呤)一定与Thymine(T,胸腺嘧啶)配对,Guanine(G,鸟嘌呤)一定与Cytosine(C,胞嘧啶)配对,反之亦然。碱基间的这种一一对应的关系叫做碱基互补配对原则。
腺嘌呤与胸腺嘧啶之间有两个氢键,鸟嘌呤与胞嘧啶之间有三个氢键,即A=T,G≡C。根据碱基互补配对的原则,一条链上的A一定等于互补链上的T;一条链上的G一定等于互补链上的C,反之如此。
在DNA转录成RNA时,有两种方法根据碱基互补配对原则判断:1)将模板链根据原则得出一条链,再将得出的链中的T改为U(尿嘧啶)即可;2)将非模板链的T改为U即可。如:DNA:ATCGAATCG(将此为非模板链)TAGCTTAGC(将此为模板链)转录出的mRNA:AUCGAAUCG(可看出只是将非模板链的T改为U,所以模板链又叫无义链。这也是中心法则和碱基互补配对原则的体现。)
为什么甲基化是基因沉默的结果,而不是原因
最佳答案A、DNA的甲基化和组蛋白的乙酰化不一定引起基因沉默,A错误;
B、增强子是通过启动子来增加转录的,有效的增强子可以位于基因的5′端,也可位于基因的3′端,有的还可位于基因的内含子中,所以增强子不一定位于所有基因的上游,B正确;
C、转录因子是一群能与基因5′端上游特定序列专一性结合,从而保证目的基因以特定的强度在特定的时间与空间表达的蛋白质分子,C错误;
D、细胞的分化是基因选择性表达,所以通常不发生重编程,D错误.
物质学中什么是基团?
最佳答案jhkhjkhjkjhk碱基”
核酸中的碱基有两类:嘌呤碱(pyrimidine)和嘧啶碱(purine)。它们是含氮的杂环化合物,所以称为碱基,也称含氮碱。
含氮碱(简称碱基):核酸中的含氮碱简称碱基,是嘌呤碱(purine)与嘧啶碱(pyrimidine)的衍生物。RNA和DNA含有的共同碱基成分是腺嘌呤(adenine,A)、鸟嘌呤(guanine,G)和胞嘧啶(cytosine, C)。二者的区别是RNA含有尿嘧啶(uracil,U),而DNA含有胸腺嘧啶(thymine,T)。嘌呤和嘧啶都有酮-烯醇式互变异构现象,一般生理pH条件下呈酮式。
有些核酸中含有修饰碱基(或稀有碱基),这些碱基大多是在上述嘌呤或嘧啶碱的不同部位甲基化(methylation)或进行其它的化学修饰而形成的衍生物。例如有些DNA分子中含有5-甲基胞嘧啶(m5C),5-羟甲基胞嘧啶(hm5C)。某些RNA分子中含有1-甲基腺嘌呤(m1A)、2,2-二甲基鸟嘌呤(m22G)和5,6-二氢尿嘧啶(DHU)等。
++++++++++++++++++
“基团”要从“基团论”说起:
“基团是一系列有机化合物中若干原子不变的组合,而在化学反应中可以被其他等当量的简单物质取代。”
拉瓦锡在1790年左右,提出有机基团论,认为基团由一群元素结合在一起,作用象单个元素,它可以单独存在。
基团论和类型论
基团论和类型论的主要提出者是法国化学家杜马(J.B.A.Dumas,1800~1884)。
基团论试图在一系列化合物分子中寻找相同的部分,表现它们具有一些共同的性质。按照分子组成基团论的观点,基是稳定的,在化学反应中保持不变,它相当于组成成分中的元素的原子,并且可以被其他元素所取代。德国化学家李比希(J.Von Liebig,1803~1873)给基团下了一个明确的定义:“基团是一系列有机化合物中若干原子不变的组合,而在化学反应中可以被其他等当量的简单物质取代。”他的定义使当量大部分用于研究无机化合物中元素互相化合时量的关系,扩展到有机化合物中元素互相化合也存在当量关系。
杜马在提出基团论以后,又在1839年提出了取代学说。他指出三氯醋酸CCl3COOH是醋酸分子CH3COOH中的CH3基上的三个氢原子被三个氯原子取代后的生成物。他说:“我仔细研究氯对各种物质的作用,使我建立了以下规则,(1)含氢的化合物在经受氯、溴、碘和氧等脱氢作用时,每失去一个氢原子,就获得一个氯、溴、碘原子或1/2个氧原子;(2)如果这个化合物含有水,水失去的氢不被取代。”…………
生物化学王镜岩高教3版
最佳答案(1)用专一性的DNA酶和RNA酶分别对两者进行水解。(2分)
(2) 用碱水解。RNA能够被水解,而DNA不被水解。(2分)
(3)进行颜色反应。二苯胺试剂可以使DNA变成蓝色;苔黑酚(地衣酚)试剂能使RNA变成绿色。(2分)
(4) 用酸水解后,进行单核苷酸分析(层析法或电泳法),含有U的是RNA,含有T的是DNA。(2分)
(5)DNA溶于苯酚而RNA不溶,故可用苯酚来沉淀(2分)
m6A的前世今生
最佳答案近年来,m6A RNA修饰的研究已成为当今生命科学领域最前沿最热门的研究方向之一,不断有CNS的文章问世,国自然资助的项目数量也逐年上升。
m6A是什么,m6A调控因子、m6A检测方法有哪些,m6A在人类疾病中扮演哪些作用。本文将做一简明阐述。
N6-methyladenosine也叫m6A,是一种广泛存在于mRNA上的碱基修饰行为,mRNA的内部修饰则用于维持mRNA的稳定性。
mRNA最常见的内部修饰包括了N6-腺苷酸甲基化(m6A)、N1-腺苷酸甲基化(m1A)、胞嘧啶羟基化(m5C)等。N6-甲基腺嘌呤(m6A)在 mRNA 内部修饰碱基中所占比例最大,主要分布在 G(m6A)C (70%)或者A(m6A)C (30%)保守序列中。
早在20世纪70年代,Desrosiers. R等在人哺乳动物细胞的 mRNA 中发现了m6A的存在,但m6A的功能以及作用机制却一直鲜有研究。
直到 2011 年,芝加哥大学何川教授团队在 *Nat Chem Biol *发表文章“N6-methyladenosine in nuclear RNA is a major substrate of the obesity-associated FTO”,揭示m6A的可逆化修饰,使 m6A 的研究重新热门起来。
<figcaption style="margin-top: calc(0.666667em); padding: 0px 1em; font-size: 0.9em; line-height: 1.5; text-align: center; color: rgb(153, 153, 153);">图1 RNA常见的碱基修饰行为</figcaption>
从图2中我们可以看到,这是一个已经发生甲基化的核糖核苷酸,确切地说叫N6-methyladenosine。
一共分为2个大的结构,左下角的是五碳糖,图2中a框部分也就是五碳糖的第二位C处的羟基发生脱氧就会变成脱氧核糖核苷酸(从RNA变成DNA)。图2中c框部分标注的,也就是第四位的C处通常会带有磷酸基。图2中b框部分通常就是我们所说的含氮碱基。
这里特指腺苷酸(A),当腺苷酸的第六位N处发生甲基化时,就是我们所说的m6A。
[图片上传失败.(image-52b088-1637633108142)]
<figcaption style="margin-top: calc(0.666667em); padding: 0px 1em; font-size: 0.9em; line-height: 1.5; text-align: center; color: rgb(153, 153, 153);">图2 N6-甲基化腺苷酸结构示意图</figcaption>
m6A这种甲基化修饰是可逆化的,调控因子包括甲基化转移酶、去甲基化酶和甲基化阅读蛋白等。
甲基化转移酶包括METTL3/14、WTAP和KIAA1429等,主要作用是催化mRNA上腺苷酸发生m6A修饰。
而去甲基化酶包括FTO和ALKHB5等,作用是对已发生m6A修饰的碱基进行去甲基化修饰。阅读蛋白主要功能是识别发生m6A修饰的碱基,从而激活下游的调控通路如RNA降解、miRNA加工等。
<figcaption style="margin-top: calc(0.666667em); padding: 0px 1em; font-size: 0.9em; line-height: 1.5; text-align: center; color: rgb(153, 153, 153);">图3 参与m6A的酶类</figcaption>
<figcaption style="margin-top: calc(0.666667em); padding: 0px 1em; font-size: 0.9em; line-height: 1.5; text-align: center; color: rgb(153, 153, 153);">图4 m6A调控</figcaption>
甲基化转移酶(methyltransferase)也称为Writers,能够让mRNA上的碱基发生m6A甲基化修饰。METTL3、METTL14、WTAP和KIAA1492都属于m6A甲基化转移酶的核心蛋白。这些蛋白会形成复合物(complex),共同行使催化功能。
<figcaption style="margin-top: calc(0.666667em); padding: 0px 1em; font-size: 0.9em; line-height: 1.5; text-align: center; color: rgb(153, 153, 153);">图5 METTL3、METTL14及其复合物结构</figcaption>
m6A去甲基化酶主要包括FTO和ALKBH5等。FTO蛋白全称Fat mass and obesity-associated protein,属于Alkb蛋白家族中的一员并且与肥胖相关。
2011年,芝加哥大学何川教授团队首次证实, FTO蛋白是一种重要的去甲基化酶。ALKBH5是另一种重要的去甲基化酶,对细胞核中的mRNA进行去甲基化修饰。在细胞系中敲低ALKBH5后,mRNA上m6A修饰水平显著上升。
发生m6A修饰的mRNA想要行使特定的生物学功能,需要甲基化阅读蛋白,也称为reader。阅读蛋白主要包括YTH结构域的蛋白、核不均一核糖蛋白(hnRNP)以及真核起始因子(eIF)等。这些阅读蛋白的功能主要包括特异性结合m6A甲基化区域,削弱与RNA结合蛋白同源结合以及改变RNA二级结构从而改变蛋白与RNA的互作。
目前检测m6A所用的技术手段包括高通量测序、比色法以及液相色谱质谱联用(LC-MS),常用的方法主要包括MeRIP-seq、miCLIP-seq、LC-MS/MS以及比色法。 其中LC-MS/MS和比色法能够检测mRNA整体的m6A水平,而MeRIP-seq和miCLIP-seq属于高通量测序手段。
LC-MS/MS在液相质谱的基础上采用串联质谱,获得分子离子峰和碎片离子峰,对碱基同时进行定性和定量分析。
LC-MS/MS法第一步 使用TRIzol提取完总 RNA后,可以用oligodT磁珠或者rRNA去除试剂盒获得包括mRNA、lncRNA等在内的RNA。
第二步 使用核酸酶P1(Nuclease P1)将RNA消化成单个碱基。
第三步 加入碱性磷酸酶和碳酸氢铵后孵育数小时,将样本注射入液相色谱仪,计算各个碱基的含量。
第四步 进入质谱串联分析,单个核糖核苷酸会被打断成五碳糖和嘧啶或嘌呤。 最后 根据m6A和总腺嘌呤的比例就能算出m6A在mRNA上整体的甲基化程度。
LC-MS/MS为最早检测m6A的方法,操作较为繁琐。相对于LC-MS/MS较为繁琐的操作,比色法更为简便。研究人员既可以提取total RNA,也可以利用oligodT磁珠富集mRNA。
<figcaption style="margin-top: calc(0.666667em); padding: 0px 1em; font-size: 0.9em; line-height: 1.5; text-align: center; color: rgb(153, 153, 153);">图6 m6A检测方法 (A)LC-MS/MS法;(B)比色法。</figcaption>
2012年之前,全基因组或全转录组水平上鉴定m6A修饰的研究领域是一片空白。
2012年Meyer K. D发表于 Cell 上的论文“Comprehensive analysis of mRNA methylation reveals enrichment in 3' UTRs and near stop codons”和Dominissini D发表于 Nature 上的论文“Topology of the human and mouse m6A RNA methylomes revealed by m6A-seq”第一次从转录水平上,大范围、高通量地鉴定了人和小鼠m6A的甲基化水平。
这种方法被称为MeRIP-seq或m6A-seq。
MeRIP-seq操作 第一步先对mRNA进行片段化,接下来使用带有m6A抗体的免疫磁珠对发生m6A甲基化的mRNA片段进行富集,然后将富集到的mRNA片段纯化后构建高通量测序文库进行上机测序。另外需要单独构建一个普通的转录组文库作为对照。最后将2个测序文库放在一起进行生物信息学分析,得到m6A甲基化程度较高的区域(m6A peak)。
这种方法优点是方便快捷成本低廉,可以对发生高甲基化的mRNA区域进行一个定性分析。但是MeRIP-seq只能鉴定m6A高甲基化的区域,并不能做到单碱基的分辨率。
2015年,Bastian Linder等发表在 Nature Methods 的文章“Single-nucleotide-resolution mapping of m6A and m6Am throughout the transcriptome”,第一次从单碱基的水平测定m6A。
这种技术被称为miCLIP-seq。
miCLIP-seq操作第一步对富集完的mRNA进行片段化。
第二步,使用带有m6A抗体免疫磁珠与带有m6A的mRNA片段进行结合。
第三步,使用紫外交联进行免疫共沉淀后,在mRNA片段的3’端连上接头序列,在5’端加上P32放射性标记后进行移膜。
第四步,根据放射性标记进行切膜回收后,对mRNA片段进行反转录和纯化回收。
第五步,对反转录组的cDNA进行环化。
第六步,对环化的cDNA进行复线性化,然后构建测序文库上机测序。
<figcaption style="margin-top: calc(0.666667em); padding: 0px 1em; font-size: 0.9em; line-height: 1.5; text-align: center; color: rgb(153, 153, 153);">图7 高通量测序检测m6A (A)MeRIP-seq;(B)miCLIP-seq</figcaption>
1. 肿瘤
2020年3月发表于 Cancer Cell 上的综述性文章“m6A Modification in Coding and Non-coding RNAs: Roles and Therapeutic Implications in Cancer”,文章指出,m6A相关修饰酶在肿瘤中的变化不尽相同,环境改变和位点突变均可导致m6A状态的改变,同时m6A参与一些肿瘤靶向治疗基因的调控。
<figcaption style="margin-top: calc(0.666667em); padding: 0px 1em; font-size: 0.9em; line-height: 1.5; text-align: center; color: rgb(153, 153, 153);">图8 m6A相关修饰酶在肿瘤中的变化</figcaption>
2. 病毒感染
2020年2月发表于 Nature Microbiology 上的文章“N6-methyladenosine modification enables viral RNA to escape recognition by RNA sensor RIG-I”,文章指出,人类偏肺病毒(HMPV)在其RNA中获得m6A,可以模仿正常细胞的RNA,躲避免疫系统的检测。
<figcaption style="margin-top: calc(0.666667em); padding: 0px 1em; font-size: 0.9em; line-height: 1.5; text-align: center; color: rgb(153, 153, 153);">图9 病毒中m6A的作用</figcaption>
3. 神经脱髓鞘改变
2020年1月发表于 Neuron 上的文章“m6A mRNA Methylation Is Essential for Oligodendrocyte Maturation and CNS Myelination”,文章指出,m6A去甲基化酶METTL14的减少会导致少突胶质细胞的减少及中枢神经的脱髓鞘改变,提示m6A在神经细胞的发育中起着重要的调节作用。
<figcaption style="margin-top: calc(0.666667em); padding: 0px 1em; font-size: 0.9em; line-height: 1.5; text-align: center; color: rgb(153, 153, 153);">图10 m6A对神经系统发育的调控。</figcaption>
m6A的研究热点不断升级,今后会有更多的高分文章出现,关联的疾病也会越来越多。
但是,m6A的检测方法较为繁琐,所需费用也比较高,限制的m6A的研究进展以及临床应用,发展快速简便经济的检测方法是今后m6A检测技术的发展方向。
同时在研究层面,m6A作为十分重要的 RNA 表观遗传学修饰,如何与 DNA、组蛋白表观遗传学协同作用调控基因表达,也需要进一步深入探索。
参考文献
碱基互补规律的名词解释
最佳答案互补碱基,碱基间的一一对应的关系叫做碱基互补配对原则就是Adenine(A,腺嘌呤)一定与Thymine(T,胸腺嘧啶)配对,Guanine(G,鸟嘌呤)一定与Cytosine(C,胞嘧啶)配对,反之亦然。
碱基指嘌呤和嘧啶的衍生物,是核酸、核苷、核苷酸的成分。DNA和RNA的主要碱基略有不同,其重要区别是:胸腺嘧啶是DNA的主要嘧啶碱,在RNA中极少见;相反,尿嘧啶是RNA的主要嘧啶碱,在DNA中则是稀有的。
在DNA分子结构中,由于碱基之间的氢键具有固定的数目和DNA两条链之间的距离保持不变,使得碱基配对必须遵循一定的规律,这就是Adenine(A,腺嘌呤)一定与Thymine(T,胸腺嘧啶)配对,Guanine(G,鸟嘌呤)一定与Cytosine(C,胞嘧啶)配对,反之亦然。碱基间的这种一一对应的关系叫做碱基互补配对原则。
扩展资料:
根据碱基互补配对的原则,一条链上的A一定等于互补链上的T;一条链上的G一定等于互补链上的C,反之如此。因此,可推知多条用于碱基计算的规律。
规律一:在一个双链DNA分子中,A=T、G=C。即:A+G=T+C或A+C=T+G。也就是说,嘌呤碱基总数等于嘧啶碱基总数,各占全部碱基总数的50%。
规律二:在双链DNA分子中,两个互补配对的碱基之和的比值与该DNA分子中每一单链中这一比值相等。(A1+A2+T1+T2)/(G1+G2+C1+C2)=(A1+T1)/(G1+C1)=(A2+T2)/(G2+C2)
规律三:DNA分子一条链中,两个不互补配对的碱基之和的比值等于另一互补链中这一比值的倒数,即DNA分子一条链中
的比值等于其互补链中这一比值的倒数。(A1+G1)/(T1+C1)=(T2+C2)/(A2+G2)
有些核酸中含有修饰碱基(或稀有碱基),这些碱基大多是在上述嘌呤或嘧啶碱的不同部位甲基化(methylation)或进行其它的化学修饰而形成的衍生物。
例如有些DNA分子中含有5-甲基胞嘧啶(m5C),5-羟甲基胞嘧啶(hm5C)。某些RNA分子中含有1-甲基腺嘌呤(m1A)、2,2-二甲基鸟嘌呤(m22G)和5,6-二氢尿嘧啶(DHU)等。
在DNA转录成RNA时,有两种方法根据碱基互补配对原则判断:
1)将模板链根据原则得出一条链,再将得出的链中的T改为U(尿嘧啶)即可;
2)将非模板链的T改为U即可。
如:DNA:ATCGAATCG(将此为非模板链)TAGCTTAGC(将此为模板链)转录出的mRNA:AUCGAAUCG(可看出只是将非模板链的T改为U,所以模板链又叫无义链。这也是中心法则和碱基互补配对原则的体现。)
参考资料来源:搜狗百科——互补碱基
有没有 RNA 甲基化测序的技术
最佳答案4%;测序覆盖度是反映测序随机性的指标之一,则可覆盖基因组的约99测序覆盖度。当深度达到5X时:基因组被测序得到的碱基覆盖的比例;测序序深度与覆盖度之间的关系可以过Lander-WatermanModel(1988)来确定
今天的内容先分享到这里了,读完本文《生物:什么是碱基?》之后,是否是您想找的答案呢?想要了解更多,敬请关注www.zuqiumeng.cn,您的关注是给小编最大的鼓励。
本文来自网络,不代表本站立场,转载请注明出处:https://www.zuqiumeng.cn/wenda/516997.html