德甲排名函数的单调性全身
今天运困体育就给我们广大朋友来聊聊德甲排名函数的单调性全身,希望能帮助到您找到想要的答案。
如何判断函数的单调性
最佳答案判断函数单调性的方法有以下3种:
1.作差法(定义法)
根据增函数、减函数的定义,利用作差法证明函数的单调性,其步骤有:取值,作差,变形,判号,定性。其中,变形一步是难点,常用技巧有:整式型---因式分解、配方法,还有六项公式法,分式型---通分合并,化为商式,二次根式型---分子有理化。
具体:先在区间上取两个值,一般都是X1、X2,设X1>X2(或者X1<X2)然后把X1、X2代进去f(x)解析式做差,也就是算f(X1)-f(X2)关键一步就是化简,一般化成乘或除的形式。
这样好判号比如:你设的是X1>X2这个条件,最后化简下来满足f(X1)-f(X2)>0的话,它在区间上就是增函数,反之则为减函数。
2.图像法
利用函数图像的连续上升或下降的特点判别函数的单调性。
3.导数法
利用导函数的符号判别函数的单调性。
函数单调性的定义
一般地,设函数定义域为I.如果对于定义域I内的某个区间D上的任意两个自变量x1,x2,当x1< x2时,都有f(x1)<f(x2),那么就说函数f(x)在区间D上是增函数。
函数单调性的规律是什么?
最佳答案增+增=增,减+减=减,增-减=增,减-增=减
有规律的是:单调递增的加单调递增的”函数的单调性是增
单调递减的加单调递减的 函数的单调性是减
单调递增的减单调递减的 函数的单调性是增
单调递减的减单调递增的 函数的单调性是减
乘与除的都无法确定
复合函数的:
1.内层与外层单调性相同的为增
2.内层与外层单调性不同的为减
正所谓:同增异减
参考资料:
关于奇偶性:
1.两个奇函数的和(差)仍是奇函数,两个偶函数的和(差)仍是偶函数.
2.奇偶性相同的两个函数的积、商(分母不为0)为偶函数,奇偶性相反的两个函数的积、商(分母不为0)为奇函数.
关于单调性:
1.函数f(x)与f(x)+c(c为常数)具有相同的单调性.
2.c>0时,函数f(x)与c*f(x)具有相同的单调性;c<0时,函数f(x)与c*f(x)具有相反的单调性.
3.若函数f(x),g(x)都是增(减)函数,则f(x)+g(x)仍是增(减)函数.
4.若f(x)>0,g(x)>0,且f(x)与g(x)都是增(减)函数.则f(x)*g(x)也是增(减)函数;若f(x)<0,g(x)<0,且f(x)与g(x)都是增(减)函数.则f(x)*g(x)是减(增)函数
判断函数单调性的常见方法有哪些?
最佳答案判断函数单调性的常见方法
一、 函数单调性的定义:
一般的,设函数y=f(X)的定义域为A,I↔A,如对于区间内任意两个值X1、X2,
1)、当X1<X2时,都有f(X1)<f(X2),那么就说y=f(x)在区间I上是单调增函数,I称为函数的单调增区间;
2)、当X1>X2时,都有f(X1)>f(X2),那么就说y=f(x)在区间I上是单调减函数,I称为函数的单调减区间。
二、 常见方法: Ⅰ、定义法:
定义域判断函数单调性的步骤 ① 取值:
在函数定义域的某一子区间I内任取两个不等变量X1、X2,可设X1<X2; ② 作差(或商)变形:
作差f(X1)-f(X2),并通过因式分解、配方、有理化等方法向有利于判断差的符号的方向变形; ③ 定号:
确定差f(X1)-f(X2)的符号; ④ 判断:
根据定义得出结论。
例:已知函数f(x)=x3+x,判断f(x)在(-∞,+∞)上的单调性并证明
解:任取x1、x2↔(-∞,+∞),x1<x2,则
f﹙x1﹚-f﹙x2﹚=(x13+x1)- (x23+x2)=(x1-x2)+(x13-x23)
=(x1-x2)(x12+x22+x1x2+1)
=(x1-x2) [﹙x1+1/2x2﹚2+1+3/4x22]
∵x1、x2↔(-∞,+∞),x1<x2, ∴x1-x2<0,(x1+1/2x2﹚2+1+3/4x22>0 故f(x1)-f(x2)<0,即f(x1)<f(x2) ∴f(x)在(-∞,+∞)上单调递增
Ⅱ、直接法(一次函数、二次函数、反比例函数的单调可直接说出): ① 函数y=-f(x)的单调性相反
② 函数y=f(x)恒为正或恒为负时,函数y=f(x)的单调性相反 ③ 在公共区间内,增函数+增函数=增函数,减函数+减函数=减函数 例:判断函数y=-x+1+1/x在(0,+∞)内的单调性 解:设y1=-x+1,y2=1/x,
∵y1在(0,+∞)上↓,y2在(0,+∞)上↓, ∴y=-x+1+1/x在(0,+∞)内↓
Ⅲ、图像法:
说明:⑴单调区间是定义域的子集 ⑵定义x1、x2的任意性
请一下
如何判断函数的单调性?
最佳答案函数的单调性(monotonicity)也可以叫做函数的增减性。
方法:
1、图象观察法
如上所述,在单调区间上,增函数的图象是上升的,减函数的图象是下降的。因此,在某一区间内,一直上升的函数图象对应的函数在该区间单调递增;一直下降的函数图象对应的函数在该区间单调递减。
2、求导法
导数与函数单调性密切相关。它是研究函数的另一种方法,为其开辟了许多新途径。特别是对于具体函数,利用导数求解函数单调性,思路清晰,步骤明确,既快捷又易于掌握,利用导数求解函数单调性,要求熟练掌握基本求导公式。
如果函数y=f(x)在区间D内可导(可微),若x∈D时恒有f'(x)>0,则函数y=f(x)在区间D内单调增加;反之,若x∈D时,f'(x)<0,则称函数y=f(x)在区间D内单调减少。
扩展资料
判断函数单调性的方法步骤
利用定义证明函数f(x)在给定的区间D上的单调性的一般步骤:
①任取x1,x2∈D,且x1<x2;
②作差△y=f(x1)-f(x2);
③变形(通常是因式分解和配方);
④定号(即判断△y的正负);
⑤下结论(即指出函数f(x)在给定的区间D上的单调性)。
即为:取值 → 作差 → 变形 → 定号 → 下结论。
参考资料来源:百度百科-单调性
函数单调性的判断方法有哪些
最佳答案函数单调性的判断方法有导数法、定义法、性质法和复合函数同增异减法。
1、导数法
首先对函数进行求导,令导函数等于零,得X值,判断X与导函数的关系,当导函数大于零时是增函数,小于零是减函数。
2、定义法
设x1,x2是函数f(x)定义域上任意的两个数,且x1<x2,若f(x1)<f(x2),则此函数为增函数;反知,若f(x1)>f(x2),则此函数为减函数.
3、性质法
若函数f(x)、g(x)在区间B上具有单调性,则在区间B上有:
⑴ f(x)与f(x)+C(C为常数)具有相同的单调性;
⑵ f(x)与c•f(x)当c>0具有相同的单调性,当c<0具有相反的单调性;
⑶当f(x)、g(x)都是增(减)函数,则f(x)+g(x)都是增(减)函数;
⑷当f(x)、g(x)都是增(减)函数,则f(x)•g(x)当两者都恒大于0时也是增(减)函数,当两者都恒小于0时也是减(增)函数;
4、复合函数同增异减法
对于复合函数y=f [g(x)]满足“同增异减”法(应注意内层函数的值域),可令 t=g(x),则三个函数 y=f(t)、t=g(x)、y=f [g(x)]中,若有两个函数单调性相同,则第三个函数为增函数;若有两个函数单调性相反,则第三个函数为减函数。
拓展资料:
1、奇函数在对称的两个区间上有相同的单调性,偶函数在对称的两个区间上有相反的单调性;
2、互为反函数的两个函数有相同的单调性;
3、如果f(x)在区间D上是增(减)函数,那么f(x)在D的任一子区间上也是增(减)函数.
今天的内容先分享到这里了,读完本文《德甲排名函数的单调性全身》之后,是否是您想找的答案呢?想要了解更多,敬请关注www.zuqiumeng.cn,您的关注是给小编最大的鼓励。
本文来自网络,不代表本站立场,转载请注明出处:https://www.zuqiumeng.cn/wenda/633583.html