导读纳维-斯托克斯方程为什么被称为数学史最复杂的公式?答相比起黎曼猜想、费马大定理、哥德巴赫猜想等全球知名的难题,纳维-斯托克斯方程的存在感很低,即使在世界千禧年七大难题...

今天运困体育就给我们广大朋友来聊聊纳维尔,希望能帮助到您找到想要的答案。

纳维-斯托克斯方程为什么被称为数学史最复杂的公式?

纳维-斯托克斯方程为什么被称为数学史最复杂的公式?

相比起黎曼猜想、费马大定理、哥德巴赫猜想等全球知名的难题,纳维-斯托克斯方程的存在感很低,即使在世界千禧年七大难题里,也很少会有人提及,最重要的原因就是,这个难题实在是不太好理解,尤其对于普通人而言,甚至名列榜首的P/NP问题普通人都可以揣摩到一些,但就是很难理解纳维—斯托克斯方程,这也是为什么民科很少触及这个问题的原因。

大家可以看看百度百科上对这个难题的描述:

起伏的波浪跟随着我们的正在湖中蜿蜒穿梭的小船,湍急的气流跟随着我们的现代喷气式飞机的飞行。数学家和物理学家深信,无论是微风还是湍流,都可以通过理解纳维-斯托克斯方程的解,来对它们进行解释和预言。虽然这些方程是19世纪写下的,我们对它们的理解仍然极少。挑战在于对数学理论作出实质性的进展,使我们能解开隐藏在纳维叶-斯托克斯方程中的奥秘。

没头没尾,你甚至在这段话里都很难揣测出这个难题究竟描述的是什么问题,流露出一股玄学的问题,今天我们就来聊聊纳维-斯托克斯方程。

这个方程并不是一个人提出来的,1775年,著名数学家欧拉,对,没有错就是数学界四大天王欧拉,他如今又来掺和流体力学了,他在《流体运动的一般原理》一书中根据无粘性流体运动时流体所受的力和动量变化从而推导出了一组方程。

方程如下:(axD+bxD+c)y=f(x)(只是其中一种形式,还有泛函极值条件的微分表达式等),这是属于无粘性流体动力学(理想流体力学)中最重要的基本方程,是指对无粘性流体微团应用牛顿第二定律得到的运动微分方程,它描述理想流体的运动规律。奠定了理想流体力学基础。

粘性流体是指粘性效应不可忽略的流体。自然界中的实际流体都是具有粘性,所以实际流体又称粘性流体,是指流体质点间可流层间因相对运动而产生摩擦力而反抗相对运动的性质。

1821年,著名工程师纳维推广了欧拉的流体运动方程,考虑了分子间的作用力,从而建立了流体平衡和运动的基本方程。方程中只含有一个粘性常数。

1845年斯托克斯从连续统的模型出发,改进了他的流体力学运动方程,得到有两个粘性常数的粘性流体运动方程的直角坐标分量形式,这就是后世所说的纳维-斯托克斯方程。

纳维-斯托克斯方程有很多种表达形式

解释纳维-斯托克斯方程的细节之前,首先,必须对流体作几个假设。第一个是流体是连续的。这强调它不包含形成内部的空隙,例如,溶解的气体气泡,而且它不包含雾状粒子的聚合。另一个必要的假设是所有涉及到的场,全部是可微的,例如压强P,v,密度ρ,温度Q等等。该方程从质量,动量守恒,和能量守恒的基本原理导出。

对此,有时必须考虑一个有限的任意体积,称为控制体积,在其上这些原理很容易应用。该有限体积记为ω,而其表面记为ω。该控制体积可以在空间中固定,也可能随着流体运动。

可以说纳维-斯托克斯方程是众多科学家和工程师的推动下产生的,是一组描述像液体和空气这样的流体物质的方程。这些方程建立了流体的粒子动量的改变率(力)和作用在液体内部的压力的变化和耗散粘滞力(类似于摩擦力)以及引力之间的关系。这些粘滞力产生于分子的相互作用,能告诉我们液体有多粘。这样,纳维-斯托克斯方程描述作用于液体任意给定区域的力的动态平衡。

在流体力学中,有很多方程,但很多方程都和纳维尔-斯托克斯方程有着联系,纳维-斯托克斯方程可以说描述了流体领域的大部分条件,当然了,该方程也有其适用范围,该方程只适用于牛顿流体。

什么是牛顿流体呢?简单说就是:任一点上的剪应力都同剪切变形速率呈线性函数关系的流体。一般高黏度的流体是不满足这种关系的,说明牛顿流体和非牛顿流体有个简单的例子就是大家熟知的虹吸现象。在低黏度下,虹吸要进行下去,吸取口必须在页面以下,但非牛顿流体的高黏度流体下,吸取口哪怕高于液面,其虹吸依然能够进行,因为黏度太大了。

而对于工程应用来说,大部分情况还是处理牛顿流体,或者可以近似为牛顿流体。可以说,该方程在流体力学中起着基础性的作用,但也起着决定性的作用。

关于这组方程所涉及的难题就是,如何用数学理论阐明这组方程。对,甚至用数学理论阐明用于描述奇特黑洞的爱因斯坦场方程都会比阐述纳维-斯托克斯方程更简单一些。

所以有关纳维-斯托克斯方程其解的数学性质有关的数学问题被称为纳维-斯托克斯方程解的存在性与光滑性。

尽管纳维-斯托克斯方程可以描述空间中流体(液体或气体)的运动。纳维-斯托克斯方程式的解可以用到许多实际应用的领域中。比如可以运用到模拟天气,洋流,管道中的水流,星系中恒星的运动,翼型周围的气流。它们也可以用于飞行器和车辆的设计,血液循环的研究,电站的设计,污染效应的分析等等。

不过目前对于纳维-斯托克斯方程式解的理论研究还是不足,尤其纳维-斯托克斯方程式的解常会包括紊流。

紊流又称湍流,是流体的一种流动状态。当流速很小时,流体分层流动,互不混合,称为层流,或称为片糖;逐渐增加流速,流体的流线开始出现波状的摆动,摆动的频率及振幅随流速的增加而增加,此种流况称为过渡流;当流速增加到很大时,流线不再清楚可辨,流场中有许多小漩涡,称为湍流,又称为乱流、扰流或紊流。(飞机最怕遇见湍流)

虽然紊流在科学及工程中非常的重要,但是紊流无序性、耗能性、 扩散性。至今仍是未解决的物理学问题之一。

另外,许多纳维-斯托克斯方程式解的基本性质也都尚未被证明。因为纳维-斯托克斯方程依赖微分方程来描述流体的运动。不同于代数方程,这些方程不寻求建立所研究的变量(譬如和压力)的关系,而寻求建立这些量的变化率或通量之间的关系。用数学术语来讲,这些变化率对应于变量的导数。其中,最简单情况的0粘滞度的理想流体的纳维-斯托克斯方程表明,加(的导数,或者说变化率)是和内部压力的导数成正比的。

这表示对于给定的物理问题,至少要用微积分才可以求得其纳维-斯托克斯方程的解。实用上,也只有最简单的情况才能用这种方法获得已知解。这些情况通常涉及稳定态(流场不随时间变化)的非紊流,其中流体的粘滞系数很大或者其很小(低雷诺数)。

对于更复杂的情形,例如厄尔尼诺这样的全球性气象系统或机翼的升力,纳维-斯托克斯方程的解必须借助计算机才能求得。这个科学领域称为计算流体力学。

例如数学家就尚未证明在三维座标,特定的初始条件下,纳维-斯托克斯方程式是否有符合光滑性的解。也尚未证明若这样的解存在时,其动能有其上下界。

而千禧年关于纳维-斯托克斯方程的问题则更为困难,它给出的问题是:在三维的空间及时间下,给定一起始的场,存在一向量的场及纯量的压强场,为纳维-斯托克斯方程式的解,其中场及压强场需满足光滑及全局定义的特性。

注意,世界千禧年七大数学问题中每个数学问题的官方陈述除了P/NP问题之外,都是由此领域或者在此问题上做出过成果的菲尔兹奖得主进行撰写,确保能够精炼概括出问题,从而保证问题的严谨性,而P/NP问题因为涉及到计算机方面,所以官方陈述是由图灵奖得主斯蒂芬·库克撰写,纳维-斯托克斯方程存在性与光滑性。查尔斯·费夫曼撰写的官方陈述

如果你没有办法理解,你可以简单理解成,科学家希望可以找出纳维-斯托克斯方程的通解,也就是说证明方程的解总是存在。换句话说,这组方程能否描述任何流体,在任何起始条件下,未来任一时间点的情况。

一组用数学理论阐明都困难的方程组,你还需要去证明这个方程的解总是存在。这让许多科学家为之崩溃。

目前来说,目前只有大约一百多个特解被解出来。而数学家让·勒雷在1934年时证明了所谓纳维-斯托克斯问题弱解的存在,此解在平均值上满足纳维-斯托克斯问题,但无法在每一点上满足。

而自此之后,关于纳维-斯托克斯问题的研究就停滞不前,所以它也被称为最难的数学或物理公式,直到

80 年以后,陶哲轩在纳维-斯托克斯问题上发表了文章《Finite time blowup for an averaged

three-dimensional Navier-Stokes

equation》,他的主要目的是将纳维-斯托克斯方程全局正则性问题的超临界状态屏障形式化。粗略地说,就是抽像地建立纳维-斯托克斯方程的全局正则性是不可能的。陶哲轩认为,相信抽象方法(基於能量等式的泛函分析方法比如半群等)和纯粹的调和分析应该是不够用的,可能必须要用到NS方程的特殊几何比如vorticity,这篇文章就是构造了一个类似于NS方程、但不是原先的NS方程的一个反例。

他说,想象一下假如有人异常聪明,纯粹用水创造了一台机器,它并不由杆和齿轮而是由相互作用的水流构成。陶边说着边像魔术师般用手在空中比划出一个形状。想象一下这台机器可以copy出另一个更小更快的自己,接着这个更小更快的又copy出另一个,不断继续下去,直到在一个微小的空间达到了无限的,从而引发了爆炸。陶笑着说到他并不是提议真的创建这样一台机器,这只是一个思想实验,就像爱因斯坦导出狭义相对论。但是,陶解释到,如果可以从数学上证明在原则上没有什么可以阻止这个奇妙装置运转,那么这便意味着水实际上会爆炸。而且在这个过程中,他也会解决纳维-斯托克斯方程的存在性与光滑性的问题。

无论怎么样来说,在不断解决纳维-斯托克斯方程的过程中,无数新的数学工具数学方法随之诞生,引领着数学不断前进发展。这就是这些难题猜想存在的意义。

文丘里实验的目的是什么?

文丘里实验是一种测量流体在不同管道中流动和压力变化的实验方法,其目的是研究流体在管道中的流动规律,揭示流体动力学的基本原理。文丘里实验具有重要的理论意义和实际应用价值,主要体现在以下几个方面:

1. 验证流体动力学基本定律:文丘里实验是验证伯努利方程、纳维尔-斯托克斯方程等流体动力学基本定律的重要手段。通过实验测量不同条件下的流速、压力等参数,可以检验这些定律在实际情况中的适用性,为流体动力学理论研究提供实验依据。

2. 研究流体在复杂管道中的流动特性:文丘里实验可以研究流体在弯曲、收缩、扩张等复杂管道中的流动特性,揭示流体在这些特殊管道中的流动规律。这对于设计水利工程、输油输气管道等工程设施具有重要意义。

3. 优化管道系统设计:文丘里实验可以为管道系统的设计提供参考数据工程师选择合适的管道直径、弯头角度等参数,以实现流体输送的最佳效果。例如,在供水系统中,通过文丘里实验可以确定最佳的管道布局和阀门设置,以保证水流的稳定和节能。

4. 研究非牛顿流体的流动特性:文丘里实验不仅可以用于研究牛顿流体(如水、空气等),还可以用于研究非牛顿流体(如泥浆、凝胶等)的流动特性。这对于开发新型非牛顿流体材料及其应用具有重要意义。

5. 探索新型流体动力学现象:文丘里实验可以用于研究一些特殊的流体动力学现象,如湍流、空化、多相流等。这些现象在航空航天、能源、环保等领域具有重要应用价值,通过文丘里实验可以揭示这些现象的规律,为相关领域的研究和应用提供理论支持。

6. 教学实践:文丘里实验作为一种典型的流体力学实验方法,广泛应用于高校的教学实践中。通过实验操作,学生可以直观地了解流体在管道中的流动规律,培养观察、分析和解决问题的能力,为进一步学习流体力学和其他相关课程打下基础。

总之,文丘里实验的目的是研究流体在管道中的流动规律,揭示流体动力学的基本原理。通过文丘里实验,可以验证流体动力学基本定律,研究流体在复杂管道中的流动特性,优化管道系统设计,研究非牛顿流体的流动特性,探索新型流体动力学现象,以及应用于教学实践。文丘里实验具有重要的理论意义和实际应用价值,对于推动流体动力学研究和相关领域的发展具有重要意义。

流体力学是由哪些人建立起来的?

马赫用纹影技术研究飞行抛射体的工作最为人们所熟知,他在1887年起的几篇论文中指出,在空气中运动的物体发出以声速c传播的球面扰动波,当物体的v大于 c时,扰动波的波前形成以物体为顶点的锥形包络面(即所谓的“马赫锥”),锥面母线与物体运动方向所形成的角度α与v、c的关系是sinα = c / v。1907年,L普朗特首次称该锥角为“马赫角”。1929年J阿克莱特鉴于比值v/c在空气动力学研究中日益显示出重要性,建议用术语“马赫数”表示这一比值。上世纪30年代末,“马赫数”被引入英语文献,至今已成为表征流体运动状态的重要参数。作为一个哲学家,马赫对当时物理学的许多基本观点持怀疑态度。他在其重要著作《力学》中对经典力学的时空观、运动观、物质观作了深刻的批判。他的思想对A爱因斯坦创立广义相对论起了一定的作用。

纳维尔斯托克斯方程

呵呵,本人最近刚好在研究这个。

纳维-斯托克斯方程

Navier-Stokes equations

描述粘性不可压缩流体动量守恒的运动方程。简称N-S方程。因1821年由C.-L.-M.-H.纳维和1845年由G.G.斯托克斯分别导出而得名。在直角坐标系中,可表达为如图所示!其矢量形式为=-Ñp+ρF+μΔv,式中ρ为流体密度,p为压强,u(u,v,w)为矢量,F(X,Y,Z)为作用于单位质量流体的彻体力,Ñ为哈密顿算子 ,Δ为拉普拉斯算子。后人在此基础上又导出适用于可压缩流体的N-S方程。N-S方程反映了粘性流体(又称真实流体)流动的基本力学规律,在流体力学中有十分重要的意义。它是一个非线性偏微分方程,求解非常困难和复杂,目前只有在某些十分简单的流动问题上能求得精确解;但在有些情况下,可以简化方程而得到近似解。例如当雷诺数Re1时,绕流物体边界层外 ,粘性力远小于惯性力 ,方程中粘性项可以忽略,N-S方程简化为理想流动中的欧拉方程(=-Ñp+ρF);而在边界层内,N-S方程又可简化为边界层方程,等等。在计算机问世和迅速发展以后,N-S方程的数值求解才有了很大的发展。

基本假设

在解释纳维-斯托克斯方程的细节之前,首先,必须对流体作几个假设。第一个是流体是连续的。这强调它不包含形成内部的空隙,例如,溶解的气体的气泡,而且它不包含雾状粒子的聚合。另一个必要的假设是所有涉及到的场,全部是可微的,例如压强,,密度,温度,等等。该方程从质量,动量,和能量的守恒的基本原理导出。对此,有时必须考虑一个有限的任意体积,称为控制体积,在其上这些原理很容易应用。该有限体积记为\Omega,而其表面记为\partial\Omega。该控制体积可以在空间中固定,也可能随着流体运动。

在计算有关空气压膜阻尼的时候,将各个方向上的纳维斯托克斯方程通过一系列的近似和化简可以得到线性和非线性的雷诺方程

如何提高教师的人文素养和科学素养 谁是著名流体学家

克劳德.路易.纳维(Claude Louis Navier,1785年2月10日-1836年8月21日)是法国工程师和物理学家,特别对力学理论有很大贡献。流体力学中的纳维-斯托克斯(Navier-Stokes)方程,简写为N-S方程,就用他和斯托克斯的名字命名的。

1793年,纳维的父亲去世后,他的妈妈就把他的教育委托给他在法国道桥公司担任工程师的叔叔埃米兰.高特(Emiland Gothey)。1802年,纳维考入伊克莱理工学院(École polytechnique)。1804年,纳维转入法国国立道桥学院(École Nationale des Ponts et Chaussées)继续大学学业。1806年,纳维在国立道桥学院毕业。最后,他接替叔叔的职位担任了法国道桥公司的总监,负责建设了舒瓦西(choisy)的大桥和巴黎的一座步行桥。1824年,纳维进入法国科学院。1830年,纳维成为法国国立道桥学院的教授。第二年接替奥古斯汀.路易.柯西,成为伊克莱理工学院“微积分与力学”教授。

纳维首次建立了可以用于工程实际的弹性理论的数学表达形式,第一次将这套理论用于建筑并达到足够的精度。1819年,纳维定义了应力零线,并最终修正了伽利略的错误结果。1826年,他提出弹性模量概念,并将它当作独立于二阶面矩的材料性质。由于这些贡献,纳维通常被认为是现代结构分析的奠基人。

纳维的最大贡献当然还是N-S方程,流体力学的基本方程。

乔治.加布里埃尔.斯托克斯爵士(Sir George Gabriel Stokes)出生于1819年8月13日,卒于1903年2月1日。斯托克斯是数学家和物理学家,在剑桥大学工作期间,对流体力学(N-S方程)、光学和数学物理(斯托克斯公式)做出重要贡献。他曾经先后担任过英国皇家学会秘书、主席。

他出生在新教徒家庭,父亲是爱尔兰斯莱戈郡Skreen教区牧师Reverend Gabriel Stokes。先后于Skreen、都柏林、布里斯托尔就读,1837年考入剑桥大学彭布罗克学院。四年后以最高分毕业,并获得史密斯奖。

1849年获卢卡斯数学教授席位,1854年出任皇家学会秘书,1885–1890年期间出任会长。1889年被封为从男爵。1899年6月1日,他任卢卡斯教授50周年,剑桥大学举行了盛大庆祝会,校监向他颁发金牌。

斯托克斯在科学上最著名的贡献是纳维尔-斯托克斯方程(Navier-Stokes方程)和微积分中的斯托克斯公式,其次他还在光学理论方面有所贡献,荧光现象中的斯托克斯偏移也是以他的名字命名的。

奥斯本.雷诺于1842年8月23日出生于爱尔兰的贝尔法斯特,出生后不久既随父母迁居至Dedham镇。雷诺的父亲是一所学校的校长,并兼任当地的牧师。雷诺的父亲还是一个对力学非常感兴趣的数学家,曾经获得多项农业机械方面的专利。雷诺的许多知识来源于他的父亲。1867年,雷诺从剑桥大学毕业,并在数学方面获得很高的奖励。1868年,雷诺在曼彻斯特的欧文学院获得工学教授一职,成为英国历史上第一批工学教授。这个教席是由曼彻斯特工业界创立并资助,同时他们促成25岁的雷诺成为这个教席的首批教授。

雷诺喜欢力学并在这方面有些“早熟”。在不到20岁还没有上大学的时候,雷诺就在一家叫爱德华.海斯的造船企业中当学徒。在此期间他学到了海轮的制造和装配知识,这些知识是他早期获得的关于流体力学的知识。从剑桥毕业后,雷诺又在伦敦的一家负责污水处理系统的公司中找到一份工程师的工作。雷诺在剑桥学习期间就发现数学对于力学的重要性,并因此选修了很多数学课。雷诺在欧文学院一直工作到退休。欧文学院在1880年时改名为曼彻斯特大学。1877年,雷诺被选为皇家学会会员。1888年,雷诺获得皇家奖章。1905年,雷诺退休。

雷诺最有名的工作就是对管流从层流转捩到湍流的流动条件的研究。在这项研究中得出一个无量纲的动力相似准则,即惯性力与粘性力之比。雷诺的另一个贡献是用时间平均方法将湍流看作时均场与脉动场的叠加,由此得到的雷诺平均NS方程,至今还是湍流计算中的主要数学模型。

雷诺一生发表过70篇学术报告。在雷诺晚年的时候,这些报告被整理成三卷本的合集。这些报告涉猎的范围包括流体力学、热力学、分子动力学、水汽冷凝、船用螺旋推进器、船用涡轮推进器、水力刹车、水力润滑以及用于测定热功当量的实验仪器等。1903年时,雷诺出版了一部名为《宇宙的亚层力学》的书。在这部书中,雷诺声称整个空间是由非常小的球体填充而成的。至今也没有人能完全明白这本书的内容。

路德维奇.普朗特(Ludwig Prandtl)1875年2月4日出生于德国的弗莱辛(Freising),1953年8月15日卒于哥廷根。普朗特是现代力学的奠基人之一,他创立了边界层理论、薄翼理论、升力线理论,研究了超声速流动,提出普朗特-葛劳渥法则,并与他的学生梅耶(Meyer)一起研究了膨胀波现象(普朗特-梅耶流动),并首次提出超声速喷管设计方法。普朗特的开创性工作,将19世纪末期的水力学和水动力学研究统一起来,被称为“现代流体力学之父”。除了了在流体力学中的研究工作,还培养了很多著名科学家,其中包括冯.卡门、梅耶等著名流体力学家,对我国流体力学研究做出奠基工作的陆士嘉教授也曾是普朗特的学生。

普朗特的母亲常年患病,因此普朗特的少年时期更多的时间是与父亲一起度过的。普朗特的父亲是个工学教授,与父亲在一起的生活经历使普朗特养成了观察自然、仔细体味的习惯。1894年普朗特进入慕尼黑技术学院(Technische Hochschule Munich)学习,6年后获得博士学位(Ph.D.)。普朗特在慕尼黑的主要工作是在固体力学范畴内,主要是设计一种工厂中使用的设备。在那里他第一次介入流体力学领域——当时他要设计一种吸出装置,在经过一系列试验对比后,他设计出一种流量更高、能耗更小的装置。

1901年,普朗特成为汉诺威技术学校(Technical School in Hannover,即现在的汉诺威技术大学,Technical University Hannover)的流体力学教授。在这所学校,普朗特完成了他几项著名的工作。1904年,普朗特完成他最著名的一篇论文——《非常小摩擦下的流体流动》。在这篇论文中,普朗特首次描述了边界层及其在减阻和流线型设计中的应用,描述了边界层分离,并提出失速概念。后来普朗特的几个学生曾经试图给边界层方程找到封闭形式的解,但都没有成功。普朗特原始论文中的近似解于是得到广泛应用。

普朗特的论文引起数学家克莱因的关注,克莱因因此举荐普朗特成为哥廷根大学技术物理学院主任。在随后的几十年中,普朗特将这所学院发展成为空气动力学理论的推进器,在这个学科中领先世界直到二战结束。1925年从这个学院中分离出凯撒.威尔海姆(Kaiser Wilhelm)流动研究所(即现在的Max Planck动力学与自组织研究所)。

1902-07年间,普朗特曾经跟随弗雷德里克.兰开斯特(Friedricks Lanchester),与阿尔伯特.贝茨(Albert Betz)和麦克斯.芒克(Max Munk)一道,为研究真实机翼的升力问题寻找有用的数学工具。相关的工作在1918-19年间发表,此即“兰开斯特-普朗特机翼理论”。后来普朗特还专门研究了带弯度翼型的气动问题,并提出简化的薄翼理论。这项工作使人们认识到对于有限翼展机翼,翼尖效应对机翼整体性能的重要性。这项工作的主要贡献在于指出翼尖涡和诱导阻力的本性,这个问题在很长时期内一直没有得到重视。在这些理论的指导下,飞机设计师们第一次可以在飞机被制造出来之前就能了解其基本性能。

1908年,普朗特与他的学生西奥多.梅耶(Theodor Meyer)提出第一个关于超声速激波流动的理论,普朗特-梅耶膨胀波理论成为超声速风洞设计的理论基础。此后他一直没有时间在这个问题上继续研究下去,直到1929年他和阿道夫.布斯曼(Adolf Busemann)一起提出一种超声速喷管的设计方法。直到今天,所有超声速风洞和火箭喷管的设计仍然采用普朗特的方法。关于超声速流动的完整理论最后由普朗特的学生西奥多.冯.卡门(Theodore Von Karman)完成。

1922年,普朗特与理查德.冯.米塞斯(Richard Von Mises)一起创建GAMM-国际应用数学与力学学会,并在1922年至33年期间担任主席。1933年希特勒上台后,普朗特默许了对犹太同事的开除,并为保持德国在国际科学界的地位进行了大量宣传活动。在二战前和二战期间,普朗特与格林的帝国空军部(Reich's Air Ministry)有密切的合作关系。

普朗特还对可压缩性问题进行了研究,提出普朗特-葛劳渥修正公式。在二战期间,当飞机飞行接近声速时,这个公式发挥了重要作用。普朗特在流变学、弹性力学和结构力学方面也有诸多贡献。

普朗特做过很多天真的事。比如在他34岁的时候他决定结婚,于是他就跑到他的老师奥古斯特.福波(August Foppl)教授那里,请教授把女儿嫁给他,但是又不说是哪个女儿。福波教授和夫人经过紧急讨论并做出聪明决定——让大女儿嫁给普朗特。事实证明,这个决定无比正确——普朗特和夫人共同度过了幸福愉快的一生。

1911年12月11日生,浙江杭州人,1959年8月加入中国共产党,博士学位。

1929年至1934年在上海交通大学机械工程系学习,毕业后报考清华大学留美公费生,录取后在杭州笕桥飞机场实习。1935年至1939年在美国麻省理工学院航空工程系学习,获硕士学位。1936年至1939年在美国加州理工学院航空与数学系学习,获博士学位。1939年至1943年任美国加州理工学院航空系研究员。1943年至1945年任美国加州理工学院航空系助理教授(其间:1940年至1945年为四川成都航空研究所通信研究员)。1945年至1946年任美国加州理工学院航空系副教授。1946年至1949年任美国麻省理工学院航空系副教授、空气动力学教授。1949年至1955年任美国加州理工学院喷气推进中心主任、教授。

1955年回国。1955年至1964年任中国科学院力学研究所所长、研究员,国防部第五研究院院长。1965年至1970年任第七机械工业部副部长。1970年至1982年任国防科工委科学技术委员会副主任,中国科协副主席。还历任中国自动化学会第一、二届理事长,中国宇航学会、中国力学学会、中国系统工程学会名誉会长,中科院主席团执行主任、数学物理学部委员。1986年至1991年5月任中国科协第三届全委会主席。1991年5月在中国科协第四次全国代表大会上当选为科协名誉主席。1992年4月被聘为中科院学部主席团名誉主席。1994年6月当选为中国工程院院士。

是中共第九至十二届中央候补委员,第六、七、八届全国政协副主席。

是中国航天科技事业的先驱和杰出代表,被誉为“中国航天之父”和“火箭之王”。在美学习研究期间,与他人合作完成的《远程火箭的评论与初步分析》,奠定了地地导弹和探空火箭的理论基础;与他人一起提出的高超音速流动理论,为空气动力学的发展奠定了基础。1956年初,向中共中央、国务院提出《建立我国国防航空工业的意见书》。同年,国务院、中央军委根据他的建议,成立了导弹、航空科学研究的领导机构——航空工业委员会,并被任命为委员。1956年,受命组建中国第一个火箭、导弹研究所——国防部第五研究院并担任首任院长。他主持完成了“喷气和火箭技术的建立”规划,参与了近程导弹、中近程导弹和中国第一颗人造地球卫星的研制,直接领导了用中近程导弹运载原子弹“两弹结合”试验,参与制定了中国近程导弹运载原子弹“两弹结合”试验,参与制定了中国第一个星际航空的发展规划,发展建立了工程控制论和系统学等。在空气动力学、航空工程、喷气推进、工程控制论、物理力学等技术科学领域作出了开创性贡献。是中国近代力学和系统工程理论与应用研究的奠基人和倡导人。

1957年获中国科学院自然科学一等奖。1979年获美国加州理工学院杰出校友奖。1985年获国家科技进步特等奖。1989年获 “小罗克韦尔奖章”、“世界级科技与工程名人”奖和国际理工研究所名誉成员称号。1991年10月获国务院、中央军委授予的“国家杰出贡献科学家”荣誉称号和一级英雄模范奖章。1995年1月获“1994年度何梁何利基金优秀奖”。1999年,中共中央、国务院、中央军委决定,授予他“两弹一星功勋奖章”。 2006年10月获“中国航天事业50年最高荣誉奖” 。

著有《工程控制论》、《论系统工程》、《星际航行概论》等。

2009年9月10日,在中央宣传部、中央组织部、中央统战部、中央文献研究室、中央党史研究室、民政部、人力资源社会保障部、全国总工会、共青团中央、全国妇联、解放军总政治部等11个部门联合组织的“100位为新中国成立作出突出贡献的英雄模范人物和100位新中国成立以来感动中国人物”评选活动中,钱学森被评为“100位新中国成立以来感动中国人物”。

超级复杂的数学公式

纳维-斯托克斯方程

纳维-斯托克斯方程的存在感很低,即使在世界千禧年七大难题里,也很少会有人提及,最重要的原因就是,这个难题实在是不太好理解,尤其对于普通人而言,甚至名列榜首的P/NP问题普通人都可以揣摩到一些,但就是很难理解纳维—斯托克斯方程,这也是为什么民科很少触及这个问题的原因。

这个方程并不是一个人提出来的,1775年,著名数学家欧拉,对,没有错就是数学界四大天王欧拉,他如今又来掺和流体力学了,他在《流体运动的一般原理》一书中根据无粘性流体运动时流体所受的力和动量变化从而推导出了一组方程。

方程如下:(axD+bxD+c)y=f(x)(只是其中一种形式,还有泛函极值条件的微分表达式等),这是属于无粘性流体动力学(理想流体力学)中最重要的基本方程,是指对无粘性流体微团应用牛顿第二定律得到的运动微分方程,它描述理想流体的运动规律。奠定了理想流体力学基础。

粘性流体是指粘性效应不可忽略的流体。自然界中的实际流体都是具有粘性,所以实际流体又称粘性流体,是指流体质点间可流层间因相对运动而产生摩擦力而反抗相对运动的性质。

1821年,著名工程师纳维推广了欧拉的流体运动方程,考虑了分子间的作用力,从而建立了流体平衡和运动的基本方程。方程中只含有一个粘性常数。

1845年斯托克斯从连续统的模型出发,改进了他的流体力学运动方程,得到有两个粘性常数的粘性流体运动方程的直角坐标分量形式,这就是后世所说的纳维-斯托克斯方程。

纳维-斯托克斯方程有很多种表达形式

解释纳维-斯托克斯方程的细节之前,首先,必须对流体作几个假设。第一个是流体是连续的。这强调它不包含形成内部的空隙,例如,溶解的气体气泡,而且它不包含雾状粒子的聚合。另一个必要的假设是所有涉及到的场,全部是可微的,例如压强P,v,密度ρ,温度Q等等。该方程从质量,动量守恒,和能量守恒的基本原理导出。

对此,有时必须考虑一个有限的任意体积,称为控制体积,在其上这些原理很容易应用。该有限体积记为ω,而其表面记为ω。该控制体积可以在空间中固定,也可能随着流体运动。

可以说纳维-斯托克斯方程是众多科学家和工程师的推动下产生的,是一组描述像液体和空气这样的流体物质的方程。这些方程建立了流体的粒子动量的改变率(力)和作用在液体内部的压力的变化和耗散粘滞力(类似于摩擦力)以及引力之间的关系。这些粘滞力产生于分子的相互作用,能告诉我们液体有多粘。这样,纳维-斯托克斯方程描述作用于液体任意给定区域的力的动态平衡。

在流体力学中,有很多方程,但很多方程都和纳维尔-斯托克斯方程有着联系,纳维-斯托克斯方程可以说描述了流体领域的大部分条件,当然了,该方程也有其适用范围,该方程只适用于牛顿流体。

什么是牛顿流体呢?简单说就是:任一点上的剪应力都同剪切变形速率呈线性函数关系的流体。一般高黏度的流体是不满足这种关系的,说明牛顿流体和非牛顿流体有个简单的例子就是大家熟知的虹吸现象。在低黏度下,虹吸要进行下去,吸取口必须在页面以下,但非牛顿流体的高黏度流体下,吸取口哪怕高于液面,其虹吸依然能够进行,因为黏度太大了。

而对于工程应用来说,大部分情况还是处理牛顿流体,或者可以近似为牛顿流体。可以说,该方程在流体力学中起着基础性的作用,但也起着决定性的作用。

关于这组方程所涉及的难题就是,如何用数学理论阐明这组方程。对,甚至用数学理论阐明用于描述奇特黑洞的爱因斯坦场方程都会比阐述纳维-斯托克斯方程更简单一些。

所以有关纳维-斯托克斯方程其解的数学性质有关的数学问题被称为纳维-斯托克斯方程解的存在性与光滑性。

尽管纳维-斯托克斯方程可以描述空间中流体(液体或气体)的运动。纳维-斯托克斯方程式的解可以用到许多实际应用的领域中。比如可以运用到模拟天气,洋流,管道中的水流,星系中恒星的运动,翼型周围的气流。它们也可以用于飞行器和车辆的设计,血液循环的研究,电站的设计,污染效应的分析等等。

不过目前对于纳维-斯托克斯方程式解的理论研究还是不足,尤其纳维-斯托克斯方程式的解常会包括紊流。

紊流又称湍流,是流体的一种流动状态。当流速很小时,流体分层流动,互不混合,称为层流,或称为片糖;逐渐增加流速,流体的流线开始出现波状的摆动,摆动的频率及振幅随流速的增加而增加,此种流况称为过渡流;当流速增加到很大时,流线不再清楚可辨,流场中有许多小漩涡,称为湍流,又称为乱流、扰流或紊流。(飞机最怕遇见湍流)

虽然紊流在科学及工程中非常的重要,但是紊流无序性、耗能性、 扩散性。至今仍是未解决的物理学问题之一。

另外,许多纳维-斯托克斯方程式解的基本性质也都尚未被证明。因为纳维-斯托克斯方程依赖微分方程来描述流体的运动。不同于代数方程,这些方程不寻求建立所研究的变量(譬如和压力)的关系,而寻求建立这些量的变化率或通量之间的关系。用数学术语来讲,这些变化率对应于变量的导数。其中,最简单情况的0粘滞度的理想流体的纳维-斯托克斯方程表明,加(的导数,或者说变化率)是和内部压力的导数成正比的。

这表示对于给定的物理问题,至少要用微积分才可以求得其纳维-斯托克斯方程的解。实用上,也只有最简单的情况才能用这种方法获得已知解。这些情况通常涉及稳定态(流场不随时间变化)的非紊流,其中流体的粘滞系数很大或者其很小(低雷诺数)。

对于更复杂的情形,例如厄尔尼诺这样的全球性气象系统或机翼的升力,纳维-斯托克斯方程的解必须借助计算机才能求得。这个科学领域称为计算流体力学。

例如数学家就尚未证明在三维座标,特定的初始条件下,纳维-斯托克斯方程式是否有符合光滑性的解。也尚未证明若这样的解存在时,其动能有其上下界。

而千禧年关于纳维-斯托克斯方程的问题则更为困难,它给出的问题是:在三维的空间及时间下,给定一起始的场,存在一向量的场及纯量的压强场,为纳维-斯托克斯方程式的解,其中场及压强场需满足光滑及全局定义的特性。

注意,世界千禧年七大数学问题中每个数学问题的官方陈述除了P/NP问题之外,都是由此领域或者在此问题上做出过成果的菲尔兹奖得主进行撰写,确保能够精炼概括出问题,从而保证问题的严谨性,而P/NP问题因为涉及到计算机方面,所以官方陈述是由图灵奖得主斯蒂芬·库克撰写,纳维-斯托克斯方程存在性与光滑性。查尔斯·费夫曼撰写的官方陈述

如果你没有办法理解,你可以简单理解成,科学家希望可以找出纳维-斯托克斯方程的通解,也就是说证明方程的解总是存在。换句话说,这组方程能否描述任何流体,在任何起始条件下,未来任一时间点的情况。

一组用数学理论阐明都困难的方程组,你还需要去证明这个方程的解总是存在。这让许多科学家为之崩溃。

目前来说,目前只有大约一百多个特解被解出来。而数学家让·勒雷在1934年时证明了所谓纳维-斯托克斯问题弱解的存在,此解在平均值上满足纳维-斯托克斯问题,但无法在每一点上满足。而自此之后,关于纳维-斯托克斯问题的研究就停滞不前,所以它也被称为最难的数学或物理公式,直到 80 年以后,陶哲轩在纳维-斯托克斯问题上发表了文章《Finite time blowup for an averaged three-dimensional Navier-Stokes equation》,他的主要目的是将纳维-斯托克斯方程全局正则性问题的超临界状态屏障形式化。粗略地说,就是抽像地建立纳维-斯托克斯方程的全局正则性是不可能的。陶哲轩认为,相信抽象方法(基於能量等式的泛函分析方法比如半群等)和纯粹的调和分析应该是不够用的,可能必须要用到NS方程的特殊几何比如vorticity,这篇文章就是构造了一个类似于NS方程、但不是原先的NS方程的一个反例。

他说,想象一下假如有人异常聪明,纯粹用水创造了一台机器,它并不由杆和齿轮而是由相互作用的水流构成。陶边说着边像魔术师般用手在空中比划出一个形状。想象一下这台机器可以copy出另一个更小更快的自己,接着这个更小更快的又copy出另一个,不断继续下去,直到在一个微小的空间达到了无限的,从而引发了爆炸。陶笑着说到他并不是提议真的创建这样一台机器,这只是一个思想实验,就像爱因斯坦导出狭义相对论。但是,陶解释到,如果可以从数学上证明在原则上没有什么可以阻止这个奇妙装置运转,那么这便意味着水实际上会爆炸。而且在这个过程中,他也会解决纳维-斯托克斯方程的存在性与光滑性的问题。

无论怎么样来说,在不断解决纳维-斯托克斯方程的过程中,无数新的数学工具数学方法随之诞生,引领着数学不断前进发展。这就是这些难题猜想存在的意义。

今天的内容先分享到这里了,读完本文《「纳维尔」纳维尔斯托克斯公式》之后,是否是您想找的答案呢?想要了解更多,敬请关注www.zuqiumeng.cn,您的关注是给小编最大的鼓励。