导读PVA溶于水后称作什么?答PVA薄膜溶于水后,水溶液无色、无味、无毒、无害,其在自然界可以通过水解和生物降解两种途径分解,最终分解产物为H2O和CO2随着经济的快速发展和生活水平的...

今天运困体育就给我们广大朋友来聊聊江西甲醇回收,希望能帮助到您找到想要的答案。

PVA溶于水后称作什么?

PVA溶于水后称作什么?

PVA薄膜溶于水后,水溶液无色、无味、无毒、无害,其在自然界可以通过水解和生物降解两种途径分解,最终分解产物为H2O和CO2

随着经济的快速发展和生活水平的提高,环境保护和健康卫生成为人们的共识,无论是对日用品包装、果蔬农产品包装、食品饮料包装,还是对工业包装都提出了更高的要求。同时,在包装领域追求健康性能、降低成本和注重环保等成为发展趋势,在满足包装功能的前提下,包装材料向轻量化、薄壁化、功能化、可回收、可自然降解的方向发展。

聚乙烯醇(PVA)PVA薄膜具有许多优良性质,如透明度高、无静电、不吸尘、成本低、阻隔性和耐油性好,加之无毒、无污染、可完全生物降解和优良的印刷性。以PVA为原料生产的塑料薄膜,弃用后置于室外,经几次雨水冲刷后就能完全溶解而随雨水流走,参与到自然界的循环中,不会形成“白色污染”,可有效防止有毒、有害物的扩散。

福建省众塑生物降解薄膜有限公司在永安市曹远镇大兴工业区建设采用先进的吹塑全生物降解PVA薄膜生产线10条,年产量10000吨,该项目已列入福建省2008年重点预备项目。

生产聚乙烯醇的国企有哪些

就我所知聚乙烯醇生产厂家:目前有17家,分别是:A上海石化B安徽皖维C台湾长春D 山西三维E江西江维F湖南湘维G 广西广维H 福建福维I 云南云维J贵州水晶K石家庄维尼纶厂L兰州维尼纶厂M 北京有机化工厂N宁夏大地O内蒙古双欣P内蒙古蒙维.R四川川维。

中国石化集团下属企业:上海石化,北京有机化工厂,四川川维;皖维集团下属企业:安徽皖维高新材料有限公司,广西广维,内蒙古蒙维。

中国化工集团下属企业:湖南湘维,贵州水晶;江西江维属于上海宝旺集团;剩下的企业都是自负盈亏的。

扩展资料

聚乙烯醇:有机化合物,白色片状、絮状或粉末状固体,无味。

溶于水(95℃),微溶于二甲基亚砜,不溶于汽油、煤油、植物油、苯、甲苯、二氯乙烷、四氯化碳、丙酮、醋酸乙酯、甲醇、乙二醇等。聚乙烯醇是重要的化工原料,用于制造聚乙烯醇缩醛、耐汽油管道和维尼纶合成纤维、织物处理剂、乳化剂、纸张涂层、粘合剂、胶水等。

2017年10月27日,世界卫生组织国际癌症研究机构公布的致癌物清单初步整理参考,聚乙烯醇在3类致癌物清单中。2019年5月30日,一项最新国际研究发现,普通胶水中含有的聚乙烯醇可以用于造血干细胞的培养液,在此基础上有望大幅降低造血干细胞的培养成本治疗白血病等疾病。

参考资料来源:百度百科-聚乙烯醇

聚乙烯的现状走向

我国聚乙烯行业通过近几年不断发展,截至2011年装置年产能达到1082万吨。在十二五期间仍有抚顺石化、武汉乙烯、四川炼化、大庆石化等装置投产,到十二五末期,聚乙烯产能将达到1667万吨。从2011年的数据来看,聚乙烯国产量在1015.2万吨,表观需求量在1727.27万吨,从中可看出国内聚乙烯仍存在700多万吨的缺口不得不依托进口。因此,进口产品凭借其相对较高的性能和成本优势占据了我国聚乙烯市场的重要比例。但是随着国内产能的扩大和十二五期间烯烃原料的多元化,我国聚乙烯的自给率将大幅提高,对外依存度将逐渐降低。

需求方面,作为聚乙烯主要消费领域的塑料薄膜,由于其多应用于终端消费及运输环节,其需求的增长与国内整体经济形势的发展关系较大,基本维持着略高于国内GDP的增长,其增长势头稳定,存在需求刚性。从软包装薄膜产量统计来看,自2006年起平均以13%的速率递增,也印证了塑料薄膜的稳速增长。聚乙烯的另一个重要的消费领域是塑料管材,它的产量也随着我国城镇化步伐加快、市政管道建设项目增加的实施不断增加。未来几年,城镇供排水、燃气管道,以及城市地下电力、通讯护套管道等市政用塑料管道仍将成为近几年的发展重点。 聚乙烯行业在稳步的发展过程中,其行业本身存在的问题也不容小觑。我国是“少油缺气富煤”的国家,但是石脑油制烯烃是我国烯烃产品传统的主要生产方法,这势必造成我国聚乙烯存在原料和成本压力,并且在油价高企的情况下,裂解装置开工将受限制。其次,我国石化企业的研发能力有限,产品多集中在通用料级别,而在高端专用料方面表现不足,这方面不得不依靠进口。再者,当前石化企业多采用定价或者是先挂牌延期结算的销售策略,对于延期结算的模式由于成本未锁定,使得贸易商无法发挥自己的灵活性,不得不跟着石化的指导价格确定售价。另外,产能和产业分布也不均,主要分布在华北、华东和华南三大区,当然这和我国的区域经济发展有关,也和便利的交通运输相关联,但不协调发展致使三大区市场过于饱和,也不符合国家大力促进中西部地区发展的战略。

与此同时,下游塑料制品厂也面临着诸多的问题,如行业中小企业众多,总体装备水平偏低、生产工艺落后、产品结构不合理、科技投入不足、创新能力不强、产品集约化程度低、行业区域发展不平衡、市场无序竞争、抵御风险能力偏弱等。除上述企业自身存在的问题外,中小企业发展同时面临融资难、人工成本上升、原材料价格过快上涨等较为突出的问题。生产经营难度加大,中小企业发展的外部环境尚需改善。

十二五规划中提出烯烃原料多元化,制定了煤制烯烃和页岩气的发展规划。虽然这对改变我国的能源结构有重大作用,但是仔细分析来看仍无法改变石脑油制烯烃的传统地位。

我国再生聚乙烯行业起源于20世纪80年代,经过二十年的发展,在2009年的时候,整个行业逐步进入稳定发展时期,但随着市场经济的动荡,盈利水平下滑,行业发展面临着很大的困境,受到多方面的制约:

1、原材料的制约。我国国产废料回收率仍处于低位,而且回收都以走家串户的方式,货源质量与供应量均不稳定。而作为塑料制品消费大国,我国对进口聚乙烯废塑料的依存度依旧保持在30%,所以行业依旧面临着原材料供应的制约需回收体系的正规化。

2、技术的制约。聚乙烯废塑料分拣费用占处理加工费用的三分之一,绝大部分从业人员为农村富余劳动力,专业水平有待提高。同时由于技术制约,再生聚乙烯颗粒质量难以保证,初级、低级产品仍占很大比重,应用领域受限,尤其是高端产品的空间占有量狭小。

3、集群化差。由于产业集中度不高,导致污水处理等相关设备体系不健全,政策监管难发力,行业呈现无序化发展。

4、政策的制约。我国再生塑料行业缺乏鼓励行业发展的完善的税收管理和辅助政策。虽然作为循环经济的的重要产业,但事实上再生聚乙烯产业在某种程度上处于政策失灵和市场失灵的中间地带,得不到支持。反而成了环保严厉打击对象,某些政策和实际生产其实有渐行渐远的趋势。

5、认知理念差。社会对塑料再生的环保理念认知度不高,媒体舆论对再生聚乙烯行业发展存在偏见,行业发展模糊。如今年的连云港“洋垃圾”事件,澄海玩具事件,媒体对此都采取了一刀切。 煤制烯烃是指以煤为原料合成甲醇后再通过甲醇制烯烃的技术。烯烃的巨大需求量、煤炭的价格优势和石油资源的紧缺,使煤制烯烃项目极具市场竞争力,是实现我国煤代油能源战略,保证国家能源安全的重要途径之一。据了解,未来几年有将近20套煤制烯烃项目计划投建,但是煤化工是资源密集、技术密集、资金密集的大型产业,装置必须建在原料产地且对水资源用量极大,技术方面仍不成熟。同时十二五期间国家节能减排目标较2010年下降17%,而煤制烯烃从开采煤炭到生产对环境污染都相当严重,且国家准入门槛也逐步提高,能源税改革也表现了石化行业产业升级和转型的迫切性。综合来看,煤制烯烃能否对聚乙烯行业发展带来冲击和替代,均需要进一步考量观察。

2012年3月,国土资源部在“页岩气十二五规划”中公布我国页岩气可采资源量为25万亿立方米,虽然较之前EIA公布的数据略有减少,但我国的页岩气储量仍居世界第一位。我国页岩气资源丰富,技术基础和商业化条件较好,一旦政策到位,我国在借鉴美国页岩气开发的经验之后,结合本国资源和各方面条件,发展有中国特色的页岩气产业,有望成为新的产业增长点。

由于页岩气渗透率非常低,采收率在10%-20%,因而开发技术要求较高。国土资源部要求一是扎实做好资源评价工作,摸清我国页岩气资源家底;二是加大科研攻关力度,形成适合我国地质条件的页岩气勘探开发技术,并实现页岩气重大装备自主生产制造;三是制定页岩气产业政策,明确行业准入门槛和标准,形成有序竞争的页岩气发展格局;四是加大政策支持力度,推进页岩气产业快速发展。在规划中要明确部门分工,形成工作合力,使规划目标、任务落到实处。 生活水平的提高使得人们对包装材料的功能和多样化要求提高,比如保鲜膜、阻气阻光膜、选择性渗透膜、抗菌膜和印刷膜等,未来PE对于薄膜行业的应用领域将更加细化。

虽然我国耕地面积多年来呈减少趋势,但是18亿亩的红线不可逾越。随着农业科技的发展,中高端农膜需求量逐渐增大,高性能、薄型化、多功能农膜需求增长较快。但农膜生产企业规模小、地域分布分散,高档生产企业较少。后期农膜市场的规范化迫在眉睫,未来农膜生产将向着集中化的方向发展,高端农膜的生产应用开发也将对PE技术革新提出新的要求。

管材主要用于基础设施建设。从PE管材企业现状来看,业内企业普遍存在产品雷同、新产品开发缓慢、原料主要依赖进口的问题。企业需进一步加大研发力度,细分市场,并拓展应用领域,唯有如此才能在产品应用方面达到更高的层次,从而获取更多收益。虽然整体管材行业存在着一些问题,但是我国十二五计划对于加速农村改造、农村城镇化、廉租房、经济适用房的建设等要求还是会在一定程度上提升市场对于管材原料的需求,后期管材料的市场前景依然明朗。

电缆行业的发展与我国工业经济发展,特别是信息产业发展密切相关。随着电网建设的加快,特别是特高压工程的投入建设,对电线电缆料的需求将增加;其次,我国消费电子和微电子产业仍将快速发展;再次,我国3G产业在兴起,且宽带网络建设将加速,电缆行业发展前途光明。

聚乙烯醇胶棉的生产废液会对水源造成什么危害,他的化学成分能否通过净水器过滤

含聚乙烯醇废水处理技术

乙烯醇(Polyvinyl alcohol,简称PVA),是目前发现的高聚物中唯一具有水活性的有机高分子化合物。因其具有强力的黏结性,气体阻隔性,耐磨性等良好的化学、物理性能,被作为纺织行业的上浆剂,建筑行业的涂料、黏结剂,化工行业的乳化剂、分散剂,医药行业的润滑剂,造纸行业的粘合剂及土壤的改良剂而广泛应用[1-2]。但含有PVA 的工业废水,具有COD 值高,可生化性差等特点,倘若排入水体,因其具有较大的表面活性使得接纳的水体产生大量泡沫,不利于水体复氧,而且还会促进水体沉积物中重金属的迁移释放,破坏水体环境。

国内外学者对含PVA 工业废水的处理,做了大量的研究,并取得了一批重要的科研成果。在这些研究中,对PVA 废水的处理方法大致可划分为三类,即物理法,化学法和生物法。其物理法主要有盐析凝胶法、吸附法、萃取法、膜分离法和泡沫分离法等;化学法主要有高级湿式氧化法、光催化氧化法、Fenton 氧化法、过硫酸盐氧化法、微波辐射法和电化学法;生物法主要通过活性污泥利用微生物的新陈代谢作用来降解PVA。

1 物理法

1.1 盐析凝胶法

在对PVA 废水的处理过程,可采用盐析凝胶法进行。即根据PVA 特性,向废水中投加盐析剂硫酸钠和胶凝剂硼砂,使得硼砂与PVA 分子发生反应,形成PVA-硼砂双二醇型结构,在Na+和SO42-的极性作用下,通过其强大的水和能力将大量的水吸附到周围,使得PVA 脱水从废水中析出。

郭丽[4]采用盐析法退浆废水中的聚乙烯醇进行回收试验,结果表明,当废水中PVA 浓度为12 g/L 时,硫酸钠和硼砂用量分别为14 g/L 和1.4 g/L,控制反应时间20 min,反应温度50 ℃,溶液初始pH 为8.5~9.5,PVA 回收率大于90 %。

徐竟成等[5]采用化学凝结法对纺织印染退浆废水中的聚乙烯醇进行处理回收,成功地进行了生产性规模回收废水中的PVA,PVA 回收率和COD 去除率均达80%左右。

阎德顺等人[6]采用凝结法对退浆废水中的PVA 进行回收研究。结果表明,PVA 间歇反应回收率可达90 %,在此基础上,实现了PVA 连续化回收工艺,回收率达80 %。

1.2 吸附法

吸附法作为一种低能耗的固体萃取技术,在溶解性有机物的处理中有着不可比拟的优势。吸附法依靠吸附剂上密集的孔道、巨大的比表面积或通过表面各种功能基团与被吸附物质分子之间的多重作用力,达到有选择性地富集有机物的目的。吸附法的优势在于对难降解的有机物有较好地去除效果[7]。

Shishir Kumar Behera 等人[8]采用活性碳对PVA 吸附去除进行动力学研究。结果表明,当PVA 初始浓度为50 mg/L 时,投加活性碳浓度5 g/L,温度为20 ℃,pH 为6.5,搅拌转速150 r/min,反应时间30 min,PVA 去除率可达到92 %。

1.3 萃取法

萃取法作为一种高效的富集分离技术,其根据不同物质,在不同的溶剂中分配系数的大小不等的原理,利用与水不相溶的有机溶剂与试液一起振荡,使得目标物质在有机相中得以富集,具有选择性好、回收率高、设备简单、操作简便、快速,以及易于现自动控制等特点,广泛用于分析化学、无机化学、放射化学、湿法冶金以及化工制备等领域。

聚乙烯醇可用水不溶性的烃类(按100 %~120 %聚乙烯醇的质量)进行萃取而去除。含聚乙烯醇0.3 g/L 的废水,在室温下用35 %(质量)的己烷,以1000 r/min 搅拌10 min,静置1 h 后分层,水相中COD 值为86.5 mg/L,COD 去除率为59.8 %,如重复萃取3 次,则COD 降低为41.6 mg/L 相当于80.65 %的去除率[9]。

1.4 泡沫分离法

泡沫分离法是利用泡沫与水界面的物理吸附作用以表聚物形式去污净水的方法。其通过向溶液中鼓泡并形成泡沫层,使得泡沫层与液相主体分离,从而达到浓缩表面活性物质或净化液相体的目的[10]。泡沫分离技术具有设备简单、能耗低、投资少等特点,在化工、医药、污水处理等领域应用广泛。

含聚乙烯醇的废水可通入空气,使其气泡溢出而去除PVA。1 m3的聚乙烯醇废水中含有COD 843 mg/L,以1.8 L/min 的通入空气,去除产生的泡沫,78 min 后,废水的体积减少到原来的70 %,而COD 值降低到193 mg/L[9]。

1.5 膜分离法

膜分离技术是通过膜对混合物中各组分的选择渗透作用的差异,以外界能量或化学位差为推动力,对物质进行分离、富集、提纯的有效液体分离技术[11],具有低能耗,易操作且可实现废水的循环利用和回收有用物质等优点。其在污水处理领域应用广泛,并形成了微滤(MF)、超滤(UF)、纳滤(NF)、反渗透(RO)等新的污水处理方法。

王静荣等[12]采用美国Abcor 公司的卷式膜超滤装置可以从聚乙烯醇退浆废水中回收PVA 试验。结果表明,该方法是可行的。控制料液温度在60~80 ℃,操作压力为0.4~0.6 MPa 条件下,可使浓度0.5 %~1.0 %的聚乙烯醇废水浓缩至10.0 %,聚乙烯醇的去除率在95 %,回收的聚乙烯醇浆料经调配后,可回用于生产,满足生产工艺上的要求。郑辉东等[13]针对纺织印染厂排放的含PVA 退浆皮水,利用中空纤维超滤膜实验装置对其进行处理试验。结果表明,处理后的废水达到中水标准,可以循环使用。

马星骅等[14]以陶瓷膜作为载体,高岭土作为涂膜材料制备了动态膜并研究了动态陶瓷膜对PVA 退浆废水的处理效果。结果表明,在高岭土涂膜质量浓度0.6 g/L,跨膜压差0.3 MPa,错流3 m/s,温度50 ℃的条件对废水进行过滤,PVA 及COD 的去除率分别可达56 %和71 %。

2 化学氧化法

2.1 高级湿式氧化法

湿式氧化法是处理高浓度难生化有机废水的高级氧化技术,由日本煤气大阪公司开发成功[15]。它是指在高温(125~320 ℃),高压(0.5~20 MPa)条件下,以氧气或空气为氧化剂,将有机污染物氧化为有机小分子物质或将其矿化为二氧化碳和水等无机物的化学过程。它经历了传统湿式空气氧化法、催化湿式氧化法、湿式过氧化物氧化法、超临界水氧化法及催化超临界水氧化法的历程[16]。该方法具有氧化快,无二次污染,处理效率高等特点[17]。

采用湿式氧化法对含聚乙烯醇的废水进行处理,控制反应温度220 ℃,反应压力10.0 MPa,在该反应条件下,以300 r/min的速率进行搅拌1 h,可使得废水中的COD 由11800 mg/L 降低到2150 mg/L[9]。

Yan Bo 等人[18]采用催化超临界水氧化法对PVA 溶液进行了氧化实验研究。当废水中PVA浓度为2000 mg/L,投加催化剂KOH600 mg/L,反应压力25 MPa,反应温度873 K,停留时间60 s,PVA 废水被完全转化为H2,CO,CH4 和CO2,TOC 去除率、碳气化率、氢气化率分别为96.00 %,95.92 %,126.40 %。

2.2 光催化氧化法

光催化氧化是在有催化剂的条件下的光学降解,可分为均相和非均相两种类型。均相光催化氧化降解是以Fe2+或Fe3+及H2O2为介质,通过光助Fenton 产生羟基自由基得到降解。非均相催化降解是污染体系中投入一定量的光敏半导体材料,同时结合光辐射,使光敏半导体在光的照射下激发产生电子空穴对,吸附在半导体上的溶解氧、水分子等与电子空穴作用,产生OH·等氧化能力极强的自由基[16]。

吴缨等人[19]采用纳米TiO2 做为光催化剂,对聚乙烯醇(PVA)水溶液进行了超声光催化降解研究。结果表明,在超声波频率40kHz、废水初始pH 为5.5,催化剂TiO2 用量110 g/L、反应温度30 ℃、PVA 初始浓度90 mg/L 的条件下,控制反应80 min,PVA水溶液降解率可达100 %。

Yingxu Chen 等人[20]在紫外灯照射下,采用非均相的TiO2 作为催化剂对PVA 进行降解实验研究。结果表明,当PVA 初始浓度为30 mg/L,TiO2 投加量2 mg/L,H2O2 投加量为5 mmol/L,反应时间60 min,PVA 去除率可达70 %。

2.3 Fenton 氧化法

Fenton 试剂具有极强的氧化能力,由Fe2+和双氧水构成,在酸性条件下H2O2 被Fe2+离子催化分解并产生氧化能力很强的OH·自由基,具有较高的氧化能力,可以无选择的氧化废水大多数的有机物。其对废水处理主要通过有机物的氧化和混凝沉淀作用进行,与常规氧化剂处理有机废水相比较,具有反应迅速、温度和压力等反应条件温等优点[21-22]。在普通Fenton 试剂氧化法的基础上,又发展了光-Fenton、电-Fenton 等氧化方法。

曹扬[23]采用Fenton 氧化法对PVA 模拟废水进行处理研究,结果表明当溶液的初始pH=5,H2O2/COD=1.3,H2O2/Fe2+=10∶1,反应温度为40 ℃的条件下,控制反应时间30 min,COD 去除率可达到80 %,BOD/COD 值也由0.082 上升到0.60。

雷乐成[24]在0.75 L环流式光化学氧化反应器中进行了光助Fenton 高级氧化技术处理纺织印染中PVA 退浆废水的试验。研究结果表明,在低浓度亚铁离子、理论双氧水加入量、中压紫外和可见光汞灯的辐射条件下,反应0.5 h,溶解性有机碳去除率高达90 %。

2.4 臭氧氧化法

臭氧是一种氧化性很强且反应产生的物质对环境污染很小的强氧化剂[25],其氧化过程主要通过直接氧化和间接氧化来进行。直接氧化通过与污染物发生环加成、亲电反应以及亲核反应来实现,其对污染物的氧化具有选择性;间接氧化是臭氧在水溶液中容易受到诱导发生自分解,通过链反应生成强氧化剂—羟基自由基,再由羟基自由基氧化污染物[26]。

在臭氧氧化法的基础上,加入其他氧化剂或引入紫外光照或超声波,形成了O3/H2O2,O3/UV 和O3/US 等其他高级氧化技术。荆国华等人[27]进行了臭氧氧化聚乙烯醇废水的试验研究,并采用O3/UV 和O3/US 方法与单独臭氧氧化处理效果进行了对照。试验结果表明,经12 min 处理,O3/UV 和O3/US 协同作用下对PVA 降解率较单独臭氧氧化的63.2 %有显著提高,表现出了良好的协同效应。

2.5 过硫酸盐氧化法

过硫酸盐因其具有较强的氧化性、无选择性反应及室温下性质稳定等优点,成为污染物氧化反应中常规氧化剂的替代品。加之,过硫酸根离子在加热、金属离子及紫外光照射等作用的条件下,其可以形成氧化能力更强的硫酸根自由基SO4-·,并且可以形成羟基自由基OH·,在废水体系中,两种自由基可以共同参与污染物的氧化反应[28]。

S2O82-+heat/UV→2SO42-

S2O82-+Men+→SO42-+Me(n+1)++SO42-

SO42-+H2O←→OH+H++SO42-

SO42-+OH-→SO42-+OH

Seok-Young Oh 等人[28]采用过硫酸钾氧化剂在加热并投加Fe2+或Fe(0)的条件下对PVA 溶液进行氧化实验。结果表明,在PVA 初始浓度为46.5~51.9 mg/L 时,控制温度200 C,投加K2S2O8250 mg/L,并按照S2O82-与Fe2+或Fe(0)的摩尔比为1∶1 投加Fe2+或Fe(0),反应2 h 后,PVA 完全被氧化。用GC-MS 检测并证明PVA 被转化为C4H6O2。

利用硫酸铵盐或钠盐,将聚乙烯醇氧化成水不溶性的树脂加以去除。当COD 为800 mg/L 的含聚乙烯醇废水,与2000 mg/L的过硫酸铵在80~100 ℃下加热1 h 后,除去海绵状棕色树脂,COD 去除率>99 %[9]。

2.6 微波辐射法

自可以工业化生产并使用的微波源出现以后,微波能在工业生产中的应用技术得到广泛的研究,微波化学污水处理技术便应运而生。该技术是一项具有突破性、创新性、广谱性的水处理技术,就是利用微波对化学反应的诱导催化作用,通过物理及化学作用对水中的污染物进行降解、转化,从而实现污水净化的目的[29]。

夏立新等人[30]采用微波辐射技术对PVA 降解反应进行了实验研究。在试验中考察了微波功率、pH、H2O2 用量和反应时间对聚乙烯醇降解反应的影响。结果表明,在微波辐射条件下,废水初始pH 为3,微波功率为800 W,辐射时间为l min,H2O2 用量为22 g H2O2/100 g PVA 时,5 mL 聚乙烯醇(7 %)的平均聚合度能够在1 min 内由1750±50 降至67。与常规油浴加热相比,反应提高10~20 倍。

Shu-Juan Zhang 等人[31]采用γ射线对PVA 废水进行辐射降解实验。实验结果表明,PVA 的降解率受PVA 初始浓度、辐射剂量、pH、H2O2 投加量的影响。当PVA 初始浓度为200 mg/L,辐射剂量12.1 Gy/min,辐射时间90 min,废水pH 介于1~5 或在10~12 范围内变化时,PVA 降解率均在85 %,甚至有时可以达到完全矿化。

2.7 电化学法

电化学水处理技术是高级氧化技术的一种,通过外加电场作用,使废水中的污染物在特定的电化学反应器内发生电化学反应或物理反应,使废水中的污染物得到有效去除或回收,该反应过程主要包括电沉积、电吸附、电凝聚、电化学还原和电化学氧化等。其具有适应性广、操作简便、无需添加氧化还原剂、对环境友好等优点[32]。

根据污染物氧化还原产物,可将电化学水处理技术分为电化学燃烧和电化学转换两类。电化学燃烧即直接将有机物深度氧化为CO2 和H2O 等;电化学转换即把有毒物质转变为无毒物质,或把大分子有机物转化为小分子有机物。根据有机物氧化还原过程中电子转移方式不同,电化学水处理技术又可以分为直接电解和间接电解。直接电解是指污染物在电极上发生直接的电子转移过程而被氧化(阳极过程)或被还原(阴极过程)而从废水中去除。间接电解是指利用电化学产生的氧化还原物质作为反应剂或催化剂,使污染物转化成毒性更小的物质。

Wei-Lung Chou 等人[33]采用铁电凝法对PVA 溶液进行氧化处理实验。结果表明,Fe/Al 电极组和比Fe/Fe、Al/Fe、Al/Al 电极组和处理效果好。当溶液pH 为6.5,PVA 初始浓度为100 mg/L,槽电压为10 V,板间距离为2 cm,反应温度20 ℃,搅拌转速300r/min,控制反应120 min,PVA 去除率可以达到77.1 %。

徐金兰等人[34]以含PVA 的印染废水为处理对象,采用管式电凝聚器对其先进行预处理。试验结果表明,管式电凝聚器在pH=5,I=0.748 A/dm2,t=5 min。的操作条件下,COD 的去除率大约为50 %左右,电解后出水可生化性明显改善;并将电解出水经生物曝气、生物接触氧化处理,结果最终出水COD 达到100 mg/L 左右。

Sang yong Kim 等人[35]采用RuO2/Ti 作为阳极对PVA 溶液进行电化学氧化实验研究。结果表明,初始PVA 浓度为410 mg/L,板间距离为20 mm,电流密度为1.34 mA/cm2,Cl-浓度为17.1 mM,控制反应时间300 min,PVA 及COD 去除率分别为70.18 %,27.47%。

3 生化法

生化法是利用微生物的新陈代谢作用,使废水中呈溶解、胶体状态的有机污染物转化为稳定地无害物质,其分为好氧法和厌氧法。由于PVA 构成的有机污染物浓度高且难被生物降解,在采用生化法之前,对废水进行预处理,以提高废水的可生化性。

福建纺织化纤集团有限公司[36]在对PVA 废水的处理时,采用了采用水解酸化+活性污泥法+接触氧化法工艺进行处理,可以将废水中的COD 值由500~600 mg/L 降到20~60 mg/L,COD、BOD的去除率在85 %,出水优于《污水综合排放标准》中的其他排污单位一级标准。

裴义山等采用一体式好氧膜生物反应器(MBR)对难降解聚乙烯醇有机废水进行实验研究。结果表明,当进水COD为100~600mg/L 时,控制pH 为7~8,温度为15~29 ℃,HRT 为10~20 h,SRT 为100 d,可使系统出水COD 在40 mg/L 以下,平均为15.5mg/L,COD 的平均去除率为90.7 %。

来之中国污水处理工程网 >> 污水处理技术 >> 正文

如果使用家用净水器建议:益之源净水器

可 知道行家 密我 专解

根据聚合方法,聚氯乙烯可分为几个类?

根据聚合方法,聚氯乙烯可分为四大类:悬浮法聚氯乙烯,乳液法聚氯乙烯、本体法聚氯乙烯、溶液法聚氯乙烯。悬浮法聚氯乙烯是产量最大的一个品种,约占PVC总产量的80%左右。重复单元为的具有无规构型结构的聚合物。是一种通用型合成树脂。根据添加增塑剂的不同,可分为硬质和软质聚氯乙烯两类。

悬浮聚合法使单体呈微滴状悬浮分散于水相中,选用的油溶性引发剂则溶于单体中,聚合反应就在这些微滴中进行,聚合反应热及时被水吸收,为了保证这些微滴在水中呈珠状分散,需要加入悬浮稳定剂,如明胶、聚乙烯醇、甲基纤维素、羟乙基纤维素等。引发剂多采用有机过氧化物和偶氮化合物,如过氧化二碳酸二异丙酯、过氧化二碳酸二环己酯、过氧化二碳酸二乙基己酯和偶氮二异庚腈、偶氮二异丁腈等。聚合是在带有搅拌器的聚合釜中进行的。聚合后,物料流入单体回收罐或汽提塔内回收单体。然后流入混合釜,水洗再离心脱水、干燥即得树脂成品。氯乙烯单体应尽可能从树脂中抽除。作食品包装用的 PVC,游离单体含量应控制在1ppm以下。聚合时为保证获得规定的分子量和分子量分布范围的树脂并防止爆聚,必须控制好聚合过程的温度和压力。树脂的粒度和粒度分布则由搅拌和悬浮稳定剂的选择与用量控制。树脂的质量以粒度和粒度分布、分子量和分子量分布、表观密度、孔隙度、鱼眼、热稳定性、色泽、杂质含量及粉末自由流动性等性能来表征。

今天的内容先分享到这里了,读完本文《江西聚乙烯醇回收》之后,是否是您想找的答案呢?想要了解更多,敬请关注www.zuqiumeng.cn,您的关注是给小编最大的鼓励。