导读如果你喜欢看足球比赛实况转播,你经常会看到盛大的足球比赛场周围观众席上球迷胸望远镜的原理是用两个凸透镜连续放大所呈现出来的像。望远镜(a telescope/binoculars)望远镜的基...

今天运困体育就给我们广大朋友来聊聊卫星看德甲球场怎么看的,希望能帮助到您找到想要的答案。

如果你喜欢看足球比赛实况转播,你经常会看到盛大的足球比赛场周围观众席上球迷胸

如果你喜欢看足球比赛实况转播,你经常会看到盛大的足球比赛场周围观众席上球迷胸

望远镜的原理是用两个凸透镜连续放大所呈现出来的像。

望远镜(a telescope/binoculars)

望远镜的基本原理

望远镜是一种用于观察远距离物体的目视光学仪器,能把远物很小的张角按一定倍率放大,使之在像空间具有较大的张角,使本来无法用肉眼看清或分辨的物体变清晰可辨。所以,望远镜是天文和地面观测中不可缺少的工具。它是一种通过物镜和目镜使入射的平行光束仍保持平行射出的光学系统。根据望远镜原理一般分为三种。

一种通过收集电磁波来观察遥远物体的仪器。在日常生活中,望远镜主要指光学望远镜。但是在现代天文学中,天文望远镜包括了射电望远镜,红外望远镜,X射线和伽吗射线望远镜。近年来天文望远镜的概念又进一步地延伸到了引力波,宇宙射线和暗物质的领域。

在日常生活中,光学望远镜通常是呈筒状的一种光学仪器,它通过透镜的折射,或者通过凹反射镜的反射使光线聚焦直接成像,或者再经过一个放大目镜进行观察。日常生活中的光学望远镜又称“千里镜”。它主要包括业余天文望远镜,观剧望远镜和军用双筒望远镜。[编辑本段]【简介】

常用的双筒望远镜还为减小体积和翻转倒像的目的,需要增加棱镜系统,棱镜系统按形式不同可分为别汉棱镜系统和保罗棱镜系统,两种系统的原理及应用是相似的。

个人使用的小型手持式望远镜不宜使用过大放大倍率,一般以3~12倍为宜,倍数过大时,成像清晰度就会变差,同时抖动严重,超过12倍的望远镜一般使用三角架等方式加以固定。[编辑本段]【历史】

17世纪初的一天,荷兰小镇的一家眼镜店的主人利伯希(HansLippershey),为检查磨制出来的透镜质量,把一块凸透镜和一块凹镜排成一条线,通过透镜看过去,发现远处的教堂塔尖好像变大拉近了,于是在无意中发现了望远镜的秘密。1608年他为自己制作的望远镜申请专利,并遵从当局的要求,制作了一个双筒望远镜。据说小镇好几十个眼镜匠都声称发明了望远镜,不过一般都支持利伯希是望远镜的发明者。

望远镜发明的消息很快在欧洲各国流传开了,意大利科学家伽利略得知这个消息之后,就自制了一个。第一架望远镜只能把物体放大3倍。一个月之后,他制作的第二架望远镜可以放大8倍,第三架望远镜可以放大到20倍。1609年10月他作出了能放大30倍的望远镜。伽里略用自制的望远镜观察夜空,第一次发现了月球表面高低不平,覆盖着山脉并有火山口的裂痕。此后又发现了木星的4个卫星、太阳的黑子运动,并作出了太阳在转动的结论。

与此同时,德国的天文学家开普勒也开始研究望远镜,他在《屈光学》里提出了另一种天文望远镜,这种望远镜由两个凸透镜组成,与伽利略的望远镜不同,比伽利略望远镜视野宽阔。但开普勒没有制造他所介绍的望远镜。沙伊纳于1613年—1617年间首次制作出了这种望远镜,他还遵照开普勒的建议制造了有第三个凸透镜的望远镜,把二个凸透镜做的望远镜的倒像变成了正像。沙伊纳做了8台望远镜,一台一台地观察太阳,无论哪一台都能看到相同形状的太阳黑子。因此,他打消了不少人认为黑子可能是透镜上的尘埃引起的错觉,证明了黑子确实是观察到的真实存在。在观察太阳时沙伊纳装上特殊遮光玻璃,伽利略则没有加此保护装置,结果伤了眼睛,最后几乎失明。荷兰的惠更斯为了减少折射望远镜的色差在1665年做了一台筒长近6米的望远镜,来探查土星的光环,后来又做了一台将近41米长的望远镜。

使用透镜作物镜的望远镜称为折射望远镜,即使加长镜筒,精密加工透镜,也不能消除色象差,牛顿曾认为折射望远镜的色差是不可救药的,后来证明是过分悲观的。1668年他发明了反射式望远镜,斛决了色差的问题。第一台反射式望远镜非常小,望远镜内的反射镜口径只有2.5厘米,但是已经能清楚地看到木星的卫星、金星的盈亏等。1672年牛顿做了一台更大的反射望远镜,送给了英国皇家学会,至今还保存在皇家学会的图书馆里。1733年英国人哈尔制成第一台消色差折射望远镜。1758年伦敦的宝兰德也制成同样的望远镜,他采用了折射率不同的玻璃分别制造凸透镜和凹透镜,把各自形成的有色边缘相互抵消。但是要制造很大透镜不容易,目前世界上最大的一台折射式望远镜直径为102厘米,安装在雅弟斯天文台。1793年英国赫瑟尔(William Herschel),制做了反射式望远镜,反射镜直径为130厘米,用铜锡合金制成,重达1吨。1845年英国的帕森(William Parsons)制造的反射望远镜,反射镜直径为1.82米。1917年,胡克望远镜(Hooker Telescope)在美国加利福尼亚的威尔逊山天文台建成。它的主反射镜口径为100英寸。正是使用这座望远镜,哈勃(Edwin Hubble)发现了宇宙正在膨胀的惊人事实。1930年,德国人施密特(BernhardSchmidt)将折射望远镜和反射望远镜的优点(折射望远镜像差小但有色差而且尺寸越大越昂贵,反射望远镜没有色差、造价低廉且反射镜可以造得很大,但存在像差)结合起来,制成了第一台折反射望远镜。

战后,反射式望远镜在天文观测中发展很快,1950年在帕洛玛山上安装了一台直径5.08米的海尔(Hale)反射式望远镜。1969年在前苏联高加索北部的帕斯土霍夫山上安装了直径6米的反射镜。1990年,NASA将哈勃太空望远镜送入轨道,然而,由于镜面故障,直到1993年宇航员完成太空修复并更换了透镜后,哈勃望远镜才开始全面发挥作用。由于可以不受地球大气的干扰,哈勃望远镜的图像清晰度是地球上同类望远镜拍下图像的10倍。1993年,美国在夏威夷莫纳克亚山上建成了口径10米的“凯克望远镜”,其镜面由36块1.8米的反射镜拼合而成。2001设在智利的欧洲南方天文台研制完成了“超大望远镜”(VLT),它由4架口径8米的望远镜组成,其聚光能力与一架16米的反射望远镜相当。现在,一批正在筹建中的望远镜又开始对莫纳克亚山上的白色巨人兄弟发起了冲击。这些新的竞争参与者包括30米口径的“加利福尼亚极大望远镜”(California ExtremelyLarge Telescope,简称CELT),20米口径的大麦哲伦望远镜(Giant Magellan Telescope,简称GMT)和100米口径的绝大望远镜(Overwhelming Large Telescope,简称OWL)。它们的倡议者指出,这些新的望远镜不仅可以提供像质远胜于哈勃望远镜照片的太空图片,而且能收集到更多的光,对100亿年前星系形成时初态恒星和宇宙气体的情况有更多的了解,并看清楚遥远恒星周围的行星。

【分类】

一、折射望远镜,是用透镜作物镜的望远镜。分为两种类型:由凹透镜作目镜的称伽利略望远镜;由凸透镜作目镜的称开普勒望远镜。因单透镜物镜色差和球差都相当严重,现代的折射望远镜常用两块或两块的透镜组作物镜。其中以双透镜物镜应用最普遍。它由相距很近的一块冕牌玻璃制成的凸透镜和一块火石玻璃制成的凹透镜组成,对两个特定的波长完全消除位置色差,对其余波长的位置色差也可相应减弱

在满足一定设计条件时,还可消去球差和彗差。由于剩余色差和其他像差的影响,双透镜物镜的相对口径较小,一般为1/15-1/20,很少大于1/7,可用视场也不大。口径小于8厘米的双透镜物镜可将两块透镜胶合在一起,称双胶合物镜 ,留有一定间隙未胶合的称双分离物镜 。为了增大相对口径和视场,可采用多透镜物镜组。对于伽利略望远镜来说,结构非常简单,光能损失少。镜筒短,很轻便。而且成正像,但倍数小视野窄,一般用于观剧镜和玩具望远镜。对于开普勒望远镜来说,需要在物镜后面添加棱镜组或透镜组来转像,使眼睛观察到的是正像。一般的折射望远镜都是采用开普勒结构。由于折射望远镜的成像质量比反射望远镜好,视场大,使用方便,易于维护,中小型天文望远镜及许多专用仪器多采用折射系统,但大型折射望远镜制造起来比反射望远镜困难得多,因为冶炼大口径的优质透镜非常困难,且存在玻璃对光线的吸收问题,所以大口径望远镜都采用反射式

( 以下为详细介绍)

伽利略望远镜

物镜是会聚透镜而目镜是发散透镜的望远镜。光线经过物镜折射所成的实像在目镜的后方(靠近人目的后方)焦点上,这像对目镜是一个虚像,因此经它折射后成一放大的正立虚像。伽利略望远镜的放大率等于物镜焦距与目镜焦距的比值。其优点是镜筒短而能成正像,但它的视野比较小。把两个放大倍数不高的伽利略望远镜并列一起、中间用一个螺栓钮可以同时调节其清晰程度的装置,称为“观剧镜”;因携带方便,常用以观看表演等。伽利略发明的望远镜在人类认识自然的历史中占有重要地位。它由一个凹透镜(目镜)和一个凸透镜(物镜)构成。其优点是结构简单,能直接成正像。

开普勒望远镜

原理由两个凸透镜构成。由于两者之间有一个实像,可方便的安装分划板,并且各种性能优良,所以目前军用望远镜,小型天文望远镜等专业级的望远镜都采用此种结构。但这种结构成像是倒立的,所以要在中间增加正像系统。

正像系统分为两类:棱镜正像系统和透镜正像系统。我们常见的前宽后窄的典型双筒望远镜既采用了双直角棱镜正像系统。这种系统的优点是在正像的同时将光轴两次折叠,从而大大减小了望远镜的体积和重量。透镜正像系统采用一组复杂的透镜来将像倒转,成本较高,但俄罗斯20×50三节伸缩古典型单筒望远镜既采用设计精良的透镜正像系统。

历史

1608年,荷兰眼镜商人李波尔赛偶然发现用两块镜片可以看清远处的景物,受此启发,他制造了人类历史第一架望远镜。

1609年,伽利略制作了一架口径4.2厘米,长约1.2米的望远镜。他是用平凸透镜作为物镜,凹透镜作为目镜,这种光学系统称为伽利略式望远镜。伽利略用这架望远镜指向天空,得到了一系列的重要发现,天文学从此进入了望远镜时代。

1611年,德国天文学家开普勒用两片双凸透镜分别作为物镜和目镜,使放大倍数有了明显的提高,以后人们将这种光学系统称为开普勒式望远镜。现在人们用的折射式望远镜还是这两种形式,天文望远镜是采用开普勒式。

需要指出的是,由于当时的望远镜采用单个透镜作为物镜,存在严重的色差,为了获得好的观测效果,需要用曲率非常小的透镜,这势必会造成镜身的加长。所以在很长的一段时间内,天文学家一直在梦想制作更长的望远镜,许多尝试均以失败告终。

1757年,杜隆通过研究玻璃和水的折射和色散,建立了消色差透镜的理论基础,并用冕牌玻璃和火石玻璃制造了消色差透镜。从此,消色差折射望远镜完全取代了长镜身望远镜。但是,由于技术方面的限制,很难铸造较大的火石玻璃,在消色差望远镜的初期,最多只能磨制出10厘米的透镜。

十九世纪末,随着制造技术的提高,制造较大口径的折射望远镜成为可能,随之就出现了一个制造大口径折射望远镜的高潮。世界上现有的8架70厘米的折射望远镜有7架是在1885年到1897年期间建成的,其中最有代表性的是1897年建成的口径102厘米的叶凯士望远镜和1886年建成的口径91厘米的里克望远镜。

折射望远镜的优点是焦距长,底片比例尺大,对镜筒弯曲不敏感,最适合于做天体测量方面的工作。但是它总是有残余的色差,同时对紫外、红外波段的辐射吸收很厉害。而巨大的光学玻璃浇制也十分困难,到1897年叶凯士望远镜建成,折射望远镜的发展达到了顶点,此后的这一百年中再也没有更大的折射望远镜出现。这主要是因为从技术上无法铸造出大块完美无缺的玻璃做透镜,并且,由于重力使大尺寸透镜的变形会非常明显,因而丧失明锐的焦点。

二、反射望远镜,是用凹面反射镜作物镜的望远镜。可分为牛顿望远镜.卡塞格林望远镜等几种类型。反射望远镜的主要优点是不存在色差,当物镜采用抛物面时,还可消去球差。但为了减小其它像差的影响,可用视场较小。对制造反射镜的材料只要求膨胀系数较小、应力小和便于磨制。磨好的反射镜一般在表面镀一层铝膜,铝膜在2000-9000埃波段范围的反射率都大于80%,因而除光学波段外,反射望远镜还适于对近红外和近紫外波段进行研究。反射望远镜的相对口径可以做得较大,主焦点式反射望远镜的相对口径约为1/5-1/2.5,甚至更大,而且除牛顿望远镜外,镜筒的长度比系统的焦距要短得多,加上主镜只有一个表面需要加工,这就大大降低了造价和制造的困难,因此目前口径大于1.34米的光学望远镜全部是反射望远镜。一架较大口径的反射望远镜,通过变换不同的副镜,可获得主焦点系统(或牛顿系统)、卡塞格林系统和折轴系统。这样,一架望远镜便可获得几种不同的相对口径和视场。反射望远镜主要用于天体物理方面的工作。

历史

第一架反射式望远镜诞生于1668年。牛顿经过多次磨制非球面的透镜均告失败后,决定采用球面反射镜作为主镜。他用2.5厘米直径的金属,磨制成一块凹面反射镜,并在主镜的焦点前面放置了一个与主镜成45o角的反射镜,使经主镜反射后的会聚光经反射镜以90o角反射出镜筒后到达目镜。这种系统称为牛顿式反射望远镜。它的球面镜虽然会产生一定的象差,但用反射镜代替折射镜却是一个巨大的成功。

詹姆斯·格雷戈里在1663年提出一种方案:利用一面主镜,一面副镜,它们均为凹面镜,副镜置于主镜的焦点之外,并在主镜的中央留有小孔,使光线经主镜和副镜两次反射后从小孔中射出,到达目镜。这种设计的目的是要同时消除球差和色差,这就需要一个抛物面的主镜和一个椭球面的副镜,这在理论上是正确的,但当时的制造水平却无法达到这种要求,所以格雷戈里无法得到对他有用的镜子。

1672年,法国人卡塞格林提出了反射式望远镜的第三种设计方案,结构与格雷戈里望远镜相似,不同的是副镜提前到主镜焦点之前,并为凸面镜,这就是现在最常用的卡赛格林式反射望远镜。这样使经副镜镜反射的光稍有些发散,降低了放大率,但是它消除了球差,这样制作望远镜还可以使焦距很短。

卡塞格林式望远镜的主镜和副镜可以有多种不同的形式,光学性能也有所差异。由于卡塞格林式望远镜焦距长而镜身短,放大倍率也大,所得图象清晰;既有卡塞格林焦点,可用来研究小视场内的天体,又可配置牛顿焦点,用以拍摄大面积的天体。因此,卡塞格林式望远镜得到了非常广泛的应用。

赫歇尔是制作反射式望远镜的大师,他早年为音乐师,因为爱好天文,从1773年开始磨制望远镜,一生中制作的望远镜达数百架。赫歇尔制作的望远镜是把物镜斜放在镜筒中,它使平行光经反射后汇聚于镜筒的一侧。

在反射式望远镜发明后的近200年中,反射材料一直是其发展的障碍:铸镜用的青铜易于腐蚀,不得不定期抛光,需要耗费大量财力和时间,而耐腐蚀性好的金属,比青铜密度高且十分昂贵。1856年德国化学家尤斯图斯·冯·利比希研究出一种方法,能在玻璃上涂一薄层银,经轻轻的抛光后,可以高效率地反射光。这样,就使得制造更好、更大的反射式望远镜成为可能。

1918年末,口径为254厘米的胡克望远镜投入使用,这是由海尔主持建造的。天文学家用这架望远镜第一次揭示了银河系的真实大小和我们在其中所处的位置,更为重要的是,哈勃的宇宙膨胀理论就是用胡克望远镜观测的结果。

二十世纪二、三十年代,胡克望远镜的成功激发了天文学家建造更大反射式望远镜的热情。1948年,美国建造了口径为508厘米望远镜,为了纪念卓越的望远镜制造大师海尔,将它命名为海尔望远镜。从设计到制造完成海尔望远镜经历了二十多年,尽管它比胡克望远镜看得更远,分辨能力更强,但它并没有使人类对宇宙的有更新的认识。正如阿西摩夫所说:"海尔望远镜(1948年)就象半个世纪以前的叶凯士望远镜(1897年)一样,似乎预兆着一种特定类型的望远镜已经快发展到它的尽头了"。在1976年前苏联建造了一架600厘米的望远镜,但它发挥的作用还不如海尔望远镜,这也印证了阿西摩夫所说的话。

反射式望远镜有许多优点,比如:没有色差,能在广泛的可见光范围内记录天体发出的信息,且相对于折射望远镜比较容易制作。但由于它也存在固有的不足:如口径越大,视场越小,物镜需要定期镀膜等。

三、折反射望远镜,是在球面反射镜的基础上,再加入用于校正像差的折射元件,可以避免困难的大型非球面加工,又能获得良好的像质量。比较著名的有施密特望远镜

它在球面反射镜的球心位置处放置一施密特校正板。它是一个面是平面,另一个面是轻度变形的非球面,使光束的中心部分略有会聚,而外围部分略有发散,正好矫正球差和彗差。还有一种马克苏托夫望远镜

在球面反射镜前面加一个弯月型透镜,选择合适的弯月透镜的参数和位置,可以同时校正球差和彗差。及这两种望远镜的衍生型,如超施密特望远镜,贝克―努恩照相机等。在折反射望远镜中,由反射镜成像,折射镜用于校正像差。它的特点是相对口径很大(甚至可大于1),光力强,视场广阔,像质优良。适于巡天摄影和观测星云、彗星、流星等天体。小型目视望远镜若采用折反射卡塞格林系统,镜筒可非常短小。

历史

折反射式望远镜最早出现于1814年。1931年,德国光学家施密特用一块别具一格的接近于平行板的非球面薄透镜作为改正镜,与球面反射镜配合,制成了可以消除球差和轴外象差的施密特式折反射望远镜,这种望远镜光力强、视场大、象差小,适合于拍摄大面积的天区照片,尤其是对暗弱星云的拍照效果非常突出。施密特望远镜已经成了天文观测的重要工具。

1940年马克苏托夫用一个弯月形状透镜作为改正透镜,制造出另一种类型的折反射望远镜,它的两个表面是两个曲率不同的球面,相差不大,但曲率和厚度都很大。它的所有表面均为球面,比施密特式望远镜的改正板容易磨制,镜筒也比较短,但视场比施密特式望远镜小,对玻璃的要求也高一些。

由于折反射式望远镜能兼顾折射和反射两种望远镜的优点,非常适合业余的天文观测和天文摄影,并且得到了广大天文爱好者的喜爱。

射电望远镜

探测天体射电辐射的基本设备。可以测量天体射电的强度、频谱及偏振等量。通常,由天线、接收机和终端设备3部分构成。天线收集天体的射电辐射,接收机将这些信号加工、转化成可供记录、显示的形式,终端设备把信号记录下来,并按特定的要求进行某些处理然后显示出来。表征射电望远镜性能的基本指标是空间分辨率和灵敏度,前者反映区分两个天球上彼此靠近的射电点源的能力,后者反映探测微弱射电源的能力。射电望远镜通常要求具有高空间分辨率和高灵敏度。根据天线总体结构的不同,射电望远镜可分为连续孔径和非连续孔径两大类,前者的主要代表是采用单盘抛物面天线的经典式射电望远镜,后者是以干涉技术为基础的各种组合天线系统。20世纪60年代产生了两种新型的非连续孔径射电望远镜——甚长基线干涉仪和综合孔径射电望远镜,前者具有极高的空间分辨率,后者能获得清晰的射电图像。世界上最大的可跟踪型经典式射电望远镜其抛物面天线直径长达100米,安装在德国马克斯·普朗克射电天文研究所;世界上最大的非连续孔径射电望远镜是甚大天线阵,安装在美国国立射电天文台。

1931年,在美国新泽西州的贝尔实验室里,负责专门搜索和鉴别电话干扰信号的美国人KG·杨斯基发现:有一种每隔23小时56分04秒出现最大值的无线电干扰。经过仔细分析,他在1932年发表的文章中断言:这是来自银河中射电辐射。由此,杨斯基开创了用射电波研究天体的新纪元。当时他使用的是长30.5米、高3.66米的旋转天线阵,在14.6米波长取得了30度宽的“扇形”方向束。此后,射电望远镜的历史便是不断提高分辨率和灵敏度的历史。

自从杨斯基宣布接收到银河的射电信号后,美国人G·雷伯潜心试制射电望远镜,终于在1937年制造成功。这是一架在第二次世界大战以前全世界独一无二的抛物面型射电望远镜。它的抛物面天线直径为9.45米,在1.87米波长取得了12度的“铅笔形”方向束,并测到了太阳以及其它一些天体发出的无线电波。因此,雷伯被称为是抛物面型射电望远镜的首创者。

射电望远镜是观测和研究来自天体的射电波的基本设备,它包括:收集射电波的定向天线,放大射电信号的高灵敏度接收机,信息记录,处理和显示系统等等。射电望远镜的基本原理和光学反射望远镜相信,投射来的电磁波被一精确镜面反射后,同相到达公共焦点。用旋转抛物面作镜面易于实现同相聚集。因此,射电望远镜的天线大多是抛物面。

射电观测是在很宽的频率范围内进行,检测和信息处理的射电技术又较光学波希灵活多样,所以,射电望远镜种类更多,分类方法多种多样。例如按接收天线的形状可分为抛物面、抛物柱面、球面、抛物面截带、喇、螺旋、行波、天线等射电望远镜;按方向束形状可分为铅笔束、扇束、多束等射电望远镜;按观测目的可分为测绘、定位、定标、偏振、频谱、日象等射电望远镜;按工作类型又可分为全功率、扫频、快速成像等类型的射电望远镜。

空间望远镜

在地球大气外进行天文观测的大望远镜。由于避开了大气的影响和不会因重力而产生畸变,因而可以大大提高观测能力及分辨本领,甚至还可使一些光学望远镜兼作近红外 、近紫外观测。但在制造上也有许多新的严格要求,如对镜面加工精度要在0.01微米之内,各部件和机械结构要能承受发射时的振动、超重,但本身又要求尽量轻巧,以降低发射成本。第一架空间望远镜又称哈勃望远镜 ,于1990年4月24日由美国发现号航天飞机送上离地面600千米的轨道 。其整体呈圆柱型,长13米,直径4米 ,前端是望远镜部分 ,后半是辅助器械,总重约11吨。该望远镜的有效口径为2.4米 ,焦距57.6米 ,观测波长从紫外的120纳米到红外的1200纳米 ,造价15亿美元 。原设计的分辨率为0.005 ,为地面大望远镜的100倍 。但由于制造中的一个小疏忽 ,直至上天后才发现该仪器有较大的球差,以致严重影响了观测的质量。1993年12月2~13日,美国奋进号航天飞机载着7名宇航员成功地为“哈勃”更换了11个部件,完成了修复工作,开创了人类在太空修复大型航天器的历史。修复成功的哈勃望远镜在10年内将不断提供有关宇宙深处的信息 。1991 年4月美国又发射了第二架空间望远镜,这是一个观测γ射线的装置,总重17吨,功耗1.52瓦,信号传输率为17000比特/秒 ,上面载有4组探测器,角分辨率为5′~10′。其寿命2年左右。

双子望远镜

双子望远镜是以美国为主的一项国际设备(其中,美国占50%,英国占25%,加拿大占15%,智利占5%,阿根廷占2.5%,巴西占2.5%),由美国大学天文联盟(AURA)负责实施。它由两个8米望远镜组成,一个放在北半球,一个放在南半球,以进行全天系统观测。其主镜采用主动光学控制,副镜作倾斜镜快速改正,还将通过自适应光学系统使红外区接近衍射极限。

太阳望远镜

日冕是太阳周围一圈薄薄的、暗弱的外层大气,它的结构复杂,只有在日全食发生的短暂时间内,才能欣赏到,因为 天空的光总是从四面八方散射或漫射到望远镜内。

1930年第一架由法国天文学家李奥研制的日冕仪诞生了,这种仪器能够有效地遮掉太阳,散射光极小,因此可以在太阳光普照的任何日子里,成功地拍摄日冕照片。从此以后,世界观测日冕逐渐兴起。

日冕仪只是太阳望远镜的一种,20世纪以来,由于实际观测的需要,出现了各种太阳望远镜,如色球望远镜、太阳塔、组合太阳望远镜和真空太阳望远镜等。

红外望远镜

红外望远镜(infrared telescope)接收天体的红外辐射的望远镜。外形结构与光学镜大同小异,有的可兼作红外观测和光学观测。但作红外观测时其终端设备与光学观测截然不同,需采用调制技术来抑制背景干扰,并要用干涉法来提高其分辨本领。红外观测成像也与光学图像大相径庭。由于地球大气对红外线仅有7个狭窄的“窗口”,所以红外望远镜常置于高山区域。世界上较好的地面红外望远镜大多集中安装在美国夏威夷的莫纳克亚,是世界红外天文的研究中心。1991年建成的凯克望远镜是最大的红外望远镜,它的口径为10米,可兼作光学、红外两用。此外还可把红外望远镜装于高空气球上,气球上的红外望远镜的最大口径为1米,但效果却可与地面一些口径更大的红外望远镜相当。

一个足球场大小的空间辐射监测卫星结束使命后继续飘

空军研究实验室的艺术家渲染图

轨道上的演示和科学实验 (DSX) 航天器,其巨大的天线臂伸展。 (AFRL)

华盛顿——美国空军研究实验室的示范和科学实验航天器几乎有一个足球场那么长,它是有史以来最大的自承式卫星。上个月,在发射将近两年后以及预计任务结束一年后,AFRL 使这颗卫星退役。

虽然 DSX 卫星于 2019 年发射,但实验工作实际上始于 2003 年。 AFRL 希望对中地球轨道的恶劣辐射环境进行研究,该轨道定义为海拔 1243 英里至 22236 英里之间的巨大空间。 MEO 中范艾伦辐射带的排放特别具有挑战性,可能会损坏卫星。 该实验室想要一颗纯粹的科学实验卫星来收集有关该辐射的数据国防部了解和预测它并开发能够承受它的耐用航天器。 这些计划最终推动了 DSX的诞生。

DSX 配备了一套技术、传感器和天线臂,使用非常低频的无线电波来研究辐射。 DSX 的一个可展开吊臂长 80 米,第二个长 16 米,是建造在轨道上运行的最大可展开结构之一。 经过多年的努力,这颗卫星以一年的任务发射。然而,AFRL 最终让这颗卫星运行了近两年,用它进行了 1300 多次实验。

最后,AFRL 于 5 月 31 日完成了 DSX 的报废流程。实验室没有详细说明关闭的卫星会发生什么。

即使这颗卫星不再运行,它的遗产仍将继续,科学家们将继续研究它收集的数据。

DSX 首席研究员威廉·约翰斯顿 (William Johnston) 说:“我们将在余下的职业生涯中从事这项任务的科学工作。” “DSX 在了解太空环境方面的贡献对我们的国家和国防部来说意义重大。”

巴西首颗自主研发卫星成功发射,这颗卫星的专属功能是什么?

监测亚马逊热带雨林的砍伐情况。

在巴西利亚时间的2月28日,在印度的萨蒂什达万航天中心,巴西首颗自主研发的卫星,也就是亚马孙1号成功发射。在发射17分钟后,卫星顺利抵达了距地表752公里的目的地。

根据相关媒体报道, 亚马孙1号由巴西国家太空研究所和航天局合作开发,印度空间研究组织的PSLV-C51负责将亚马孙1号送入预定轨道。亚马孙1号具有6公里的电线和14000个电气连接的部件,以提供遥感数据,用来监测森林的砍伐情况,尤其是监测亚马逊热带雨林的砍伐情况以及巴西的农业发展状况。那么为何要重点监测亚马逊热带雨林呢?亚马逊热带雨林是世界范围内最大的森林和热带雨林,植被茂密,动植物种类繁多,更是有着世界动植物王国的称呼。

由于开发措施不当、保护不利等因素,亚马逊热带雨林正在受到严重的破坏,雨林的面积正以极快的减少,森林覆盖率已从80%锐减到58%,动植物资源受到较为严重的破坏,造成水土流失、暴雨以及旱灾和土地荒漠化等环境问题。专家告诉我们,亚马逊热带雨林又称为地球之肺,森林覆盖率的减少会对物种保护、维持全球气候的平衡造成负面的影响。毁林惊人,平均8秒就有足球场大小的森林从地球上消失。雨林正遭受着史上第二次严重的破坏,这已引起巴西、环保组织的关注。

从1999年至今,已有2万多平方公里的森林从地球上消失。最严重的毁林事件发生在1995年,当时有多达2.9万平方公里的森林被毁。如果毁林去世得不到控制的话,在不久之后,亚马逊热带雨林将虚有其名。面对到这样的严峻局面,反对滥伐森林的呼声逐渐强烈,而亚马孙1号也正是在这种情况下发射的。

同时此次亚马孙1号的成果发射也标志着巴西掌握了卫星研发中的流程、多任务平台飞行验证这两项技术。该卫星是巴西与印度合作的结果。这一刻代表了大家努力的顶峰,亚马孙1号对巴西而言,是十分重要的。ISRO执行官希万说,非常高兴成功发射了亚马孙1号卫星。在这次任务中,能发射巴西自主运营的首颗卫星,印度感到非常荣幸。衷心祝贺巴西取得的这个成就。

巴西有什么著名的景点

糖面包山 第1名

Av. Pasteur, 520, Rio de Janeiro, State of Rio de Janeiro 22290-255, Brazil

耶稣山 第2名

National Park of Tijuca - Alto da Boa Vista, Rio de Janeiro - RJ

伊瓜苏大瀑布 第3名

Iguazu National Park 3370, Argentina

今天的内容先分享到这里了,读完本文《卫星看巴西足球场》之后,是否是您想找的答案呢?想要了解更多,敬请关注www.zuqiumeng.cn,您的关注是给小编最大的鼓励。